Penentuan Mutu Kelapa Sawit Menggunakan Metode K-Means Clustering
DOI:
https://doi.org/10.35134/komtekinfo.v5i3.26Keywords:
Data Mining, K-Means Clustering, ClusterAbstract
The classification of the quality of palm oil in PT Tasma Puja is still done by laboratory testing and then the data is saved manually in Excel. The method of grouping takes time and allows data to be lost. With the development of knowledge, it can be replaced by a data mining approach that can be used to classify the quality of palm oil based on its standards. The k-Means clustering method can be applied to classify the quality of palm oil based on water, dirt and free fatty acids. The data used is the quality data of palm oil in December 2017 as many as 31 data with criteria of good, very good and not good. The test results contained 3 clusters, namely cluster 0 for good categories amounted to 12 data, cluster 1 for very good category amounted to 13 data and cluster 2 for less good categories amounted to 6 data. The k-Means clustering method can be used for data processing using the concept of data mining in grouping data according to criteria.
References
Krisdiarto, A.W., Sutiarso, Lilik., Widodo, K.H. (2017). “ Optimasi Kualitas Tandan Buah Segar Kelapa Sawit Dalam Proses Panen-Angkut Menggunakan Model Dinamis”, AGRITECH, Vol. 37, No. 1, Februari 2017, ISSN : 0216-0455. https://doi.org/10.22146/agritech.17015
Muzakir, Ari.,Wulandari, R.A. (2016). “Model Data Mining Sebagai Prediksi Penyakit Hipertensi Kehamilan Dengan Teknik Decision Tree”, Scientific Journal of Informatics Vol. 3, No. 1, Mei 2016 ISSN : 2407-7658. htpps://doi.org/ 10.15294/sji.v3i1.4610
Abdullah., Usman., Efendi, M. (2017). “Sistem Klasifikasi Kualitas Kopra Berdasarkan Warna Dan Tekstur Menggunakan Metode Nearest Mean Classifier (NMC)”, Jurnal Teknologi Informasi dan Ilmu Komputer (JTIIK) Vol.4, No.4, Desember 2017, hlm. 297-303 ISSN: 2355-7699. https://doi.org/10. 25126/jtiik.201744479
Nasari, Fina., Sianturi, C.J.M. (2016). “Penerapan Algoritma K-Means Clustering Untuk Pengelompokkan Penyebaran Diare Di Kabupaten Langkat”, Cogito Smart Journal/Vol. 2/No. 2/Desember 2016. htpps://doi.org/2016;2(2):108-119
Hakim, Lukman., Seruni, Harvin. (2018). “Indikasi Penyimpangan Laporan Keuangan Akademik Universitas XYZ Menggunakan Algoritma Greedy dan K-Means”, Jurnal Rekayasa Sistem dan Teknologi Informasi, Vol. 2, No. 1 (2018) 308-313. https://doi.org/10.29207/resti.v2i1.261
Nishom.M.,Fathoni,M.Y.(2018).“Implementasi Pendekatan Rule-Of-Thumb untuk Optimasi Algoritma K-Means Clustering”, Jurnal Pengembangan IT Vol. 3, No.2. https://doi.org/10.30591/jpit.v3i2.909
Sulastri, Heni., Gufroni, A.I. (2017). “Penerapan Data Mining Dalam Pengelompokkan Penderita Thalassemia”, Jurnal Teknologi dan Sistem Informasi - Vol. 03 No. 02 (2017) 299-305. https://doi.org/10.25077/ TEKNOSI.v3i2.2017.299-305


