Clustering Tingkat Penjualan Menu (Food and Beverage) Menggunakan Algoritma K-Means
DOI:
https://doi.org/10.35134/komtekinfo.v9i1.274Keywords:
Data Mining, K-Means Algorithm, Grouping, F&B MenuAbstract
Menu planning in a restaurant is part of the sales strategy. Each menu has a different level of sales. To determine the effectiveness of sales and raw materials, restaurants need knowledge of what menus need to be maintained and vice versa. An analysis that can determine the sales level menu is the analysis of the k-means algorithm data mining clustering method. The source of research data is from the history of menu sales transactions for 1 year, then analyzed by the k-means algorithm. The information found is in the form of popular F&B menus and sales level menus. The purpose of this study is to group the data menu on the level of sales (Food and Beverage). The method used is the Clustering method with the performance of the K-Means algorithm. The results showed that the clustering method with the K-Means algorithm gave a significant output in grouping sales data. The research contribution provides knowledge in the form of information in conducting sales data management
References
Nurhachita, Edi Surya Negara. (2020). A Comparison Between Naïve Bayes and The K-Means Clustering Algorithm for The Application of Data Mining on The Admission of New Students. Jurnal Intelektualita: Keislaman, Sosial, dan Sains. Vol. 9, No. 1, pp. 43–48, ISSN 2303-2952, e-ISSN 2622-8491.
[Usama Fayyad, Gregory Piatetsky-Shapiro, and Padhraic Smyth. (1996). From Data Mining to Knowledge Discovery in Databases, AI Magazine 17, no. 3: 37–53.
[Ananda, R., & Achmad Zaki Yamani. (2020). Determination of Initial K-means Centroid in the Process of Clustering Data Evaluation of Teaching Lecturers. Jurnal RESTI (Rekayasa Sistem Dan Teknologi Informasi), 4(3), 544 - 550. https://doi.org/10.29207/resti.v4i3.1896
AP, Windarto. (2017) . Implementation of Data Mining on Rice Imports by Major Country of Origin Using Algorithm Using K-Means Clustering Method. International Journal Of Artificial Intelegence Research. Vol 1, No 2, December 2017. DOI: https://doi.org/10.29099/ijair.v1i2.17
Vhallah, I., Sumijan, S., & Santony, J. (2018). Pengelompokan Mahasiswa Potensial Drop Out Menggunakan Metode Clustering K-Means. Jurnal RESTI (Rekayasa Sistem Dan Teknologi Informasi), 2(2), 572 - 577. https://doi.org/10.29207/resti.v2i2.308
E. M. Sipayung, H. Maharani, B. A. Paskhadira. (2017). Designing Customer Target Recommendation System Using K-Means Clustering Method. IJITEE, Vol. 1, No. 1. https://doi.org/10.22146/ijitee.25155
M. H. Adiya and Y. Desnelita. (2019). Penerapan Algoritma K-Means Untuk Clustering Data Obat-Obatan Pada RSUD Pekanbaru. “Jurnal Nasional Teknologi dan Sistem Informasi. vol. 01, pp. 17–24. https://doi.org/10.25077/TEKNOSI.v5i1.2019.17-24
R. A. Asroni. (2015). Penerapan Metode K-Means Untuk Clustering Mahasiswa Berdasarkan Nilai Akademik Dengan Weka Interface Studi Kasus Pada Jurusan Teknik Informatika UMM Magelang. Jurnal Ilmiah Semesta Teknika. Vol. 18, No. 1, pp. 76–82.
K. Maheswari. (2019). Finding Best Possible Number of Clusters using K-Means Algorithm. International Journal of Engineering and Advanced Technology (IJEAT) ISSN: 2249 – 8958, Volume-9 Issue-1S4 no. 1, pp. 533–538. doi: 10.35940/ijeat.A1119.1291S419
Ong, Johan Oscar. 2013. Implementasi Algoritma KMeans Clustering Untuk Menentukan Strategi Marketing President University. Jurnal Ilmiah Teknik Industri, Vol. 12. No. 1.
L. Mayola, S. Sanjaya, and W. Safitri. (2018). Identifikasi Karakteristik Jakarta Islamic Index Dengan Menggunakan Algoritma K-Means. Sebatik, vol. 22, no. 2, pp. 83–87, 2018, doi: 10.46984/sebatik.v22i2.312.
T. C. T. Chen, C. L. Liu, and H. D. Lin, “Advanced artificial neural networks,” Algorithms, vol. 11, no. 7. 2018, doi: 10.3390/a11070102.
M. Yollanda, D. Devianto, and H. Yozza, “MODEL NON-LINEAR PADA JARINGAN SARAF TIRUAN,” J. Mat. UNAND, vol. 7, no. 2, p. 89, 2018, doi: 10.25077/jmu.7.2.89-97.2018.
H. Putra and N. Ulfa Walmi, “Penerapan Prediksi Produksi Padi Menggunakan Artificial Neural Network Algoritma Backpropagation,” J. Nas. Teknol. dan Sist. Inf., vol. 6, no. 2, pp. 100–107, 2020, doi: 10.25077/teknosi.v6i2.2020.100-107.
T. A. C. Adinugraha, “Prediksi Jumlah Pendapatan Asli Daerah Kabupaten Boyolali Dengan Metode Jaringan Syaraf Tiruan Backpropagation,” Skripsi, 2016
M. Yanto, L. Mayola, and M. Hafizh, “Neural Network Backpropagation Identification of Jakarta Islamic Index (JII) Stock Price Patterns,” J. RESTI (Rekayasa Sist. dan Teknol. Informasi), vol. 4, no. 1, pp. 90–94, 2020, doi: 10.29207/resti.v4i1.1266.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2022 Jurnal Komtekinfo

This work is licensed under a Creative Commons Attribution 4.0 International License.


