Pengembangan Ekstraksi dalam Identifikasi Kelainan Gigi pada Citra Dental X-ray imaging (DXRI)

Authors

  • Sumijan Universitas Putra Indonesia YPTK Padang
  • Syafri Arlis Universitas Putra Indonesia YPTK Padang

DOI:

https://doi.org/10.35134/komtekinfo.v9i1.283

Keywords:

Extraction, Dental Abnormalities, DXRI, Dental Analysis, X-ray Imaging

Abstract

Dental X-ray imaging (DXRI) has been developed as a basis for dental professionals and professionals around the world to assist in detecting abnormalities in tooth structure. The results of the radiographs assist the imaging assessment to provide a thorough clinical diagnosis and preventive examination of the tooth structure. However, the results of the image analysis from DXRI are not sufficient, it is still necessary to use image processing and analysis methods to extract relevant information. The purpose of this study was to analyze the image of teeth on Dental X-rays by using the image extraction method. The results of this study were able to identify abnormalities in the teeth with a high success rate, namely an average of 83.33% based on testing of 10 dental images. The results of the development of the algorithm have been able to provide optimal results in identifying abnormalities in normal and abnormal teeth. Overall, the results of this study can be used as a medical reference for further medical treatment for dental abnormalities.

References

C. Oprea, P. J. Szalanski, M. V Gustova, I. A. Oprea, and V. Buzguta, “Multivariate comparison of elemental concentrations in human teeth,” Appl. Radiat. Isot., vol. 67, no. 12, pp. 2142–2145, 2009.

R. Molteni, “Direct digital dental x-ray imaging with Visualix/VIXA,” Oral surgery, oral Med. oral Pathol., vol. 76, no. 2, pp. 235–243, 1993.

D. Lin, Q. Li, W. Li, N. Duckmanton, and M. Swain, “Mandibular bone remodeling induced by dental implant,” J. Biomech., vol. 43, no. 2, pp. 287–293, 2010.

S. M. Shah, A. T. Merchant, and J. A. Dosman, “Percutaneous injuries among dental professionals in Washington State,” BMC Public Health, vol. 6, no. 1, pp. 1–5, 2006.

D. Belstrøm et al., “Metaproteomics of saliva identifies human protein markers specific for individuals with periodontitis and dental caries compared to orally healthy controls,” PeerJ, vol. 4, p. e2433, 2016.

A. H. Abdi, S. Kasaei, and M. Mehdizadeh, “Automatic segmentation of mandible in panoramic x-ray,” J. Med. Imaging, vol. 2, no. 4, p. 44003, 2015.

R. Bahuguna, A. Jain, D. Suryavanshi, H. Chauhan, S. A. Khan, and R. Thakur, “Influence of Television Advertising on Behavior of Children across Socioeconomic Backgrounds.,” J. Contemp. Dent. Pract., vol. 18, no. 1, pp. 52–56, 2017.

M. Jung et al., “Global patterns of land-atmosphere fluxes of carbon dioxide, latent heat, and sensible heat derived from eddy covariance, satellite, and meteorological observations,” J. Geophys. Res. Biogeosciences, vol. 116, no. G3, 2011.

T. Purnama, N. Ngatemi, R. Sofian, N. N. Kasihani, P. R. RE, and S. Nurbayani, “Model 5 Days Gosgi sebagai upaya pembentukan kemandirian menggosok gigi anak usia dini di sekolah,” Qual. J. Kesehat., vol. 14, no. 1, pp. 19–24, 2020.

O. Nomir and M. Abdel-Mottaleb, “Human identification from dental X-ray images based on the shape and appearance of the teeth,” IEEE Trans. Inf. forensics Secur., vol. 2, no. 2, pp. 188–197, 2007.

P. Caruso, E. Silvestri, and L. M. Sconfienza, Cone beam CT and 3D imaging: A practical guide. Springer, 2013.

J.-J. Hwang, Y.-H. Jung, B.-H. Cho, and M.-S. Heo, “An overview of deep learning in the field of dentistry,” Imaging Sci. Dent., vol. 49, no. 1, pp. 1–7, 2019.

J. Hatvani, A. Horváth, J. Michetti, A. Basarab, D. Kouamé, and M. Gyöngy, “Deep learning-based super-resolution applied to dental computed tomography,” IEEE Trans. Radiat. Plasma Med. Sci., vol. 3, no. 2, pp. 120–128, 2018.

J. Lee et al., “Dart: Dynamic animation and robotics toolkit,” J. Open Source Softw., vol. 3, no. 22, p. 500, 2018.

H.-J. Rumpf et al., “Including gaming disorder in the ICD-11: The need to do so from a clinical and public health perspective: Commentary on: A weak scientific basis for gaming disorder: Let us err on the side of caution (van Rooij et al., 2018),” J. Behav. Addict., vol. 7, no. 3, pp. 556–561, 2018.

D. Li et al., “Superconductivity in an infinite-layer nickelate,” Nature, vol. 572, no. 7771, pp. 624–627, 2019.

S. B. Khanagar et al., “Developments, application, and performance of artificial intelligence in dentistry--A systematic review,” J. Dent. Sci., vol. 16, no. 1, pp. 508–522, 2021.

S. Eser et al., “Selective requirement of PI3K/PDK1 signaling for Kras oncogene-driven pancreatic cell plasticity and cancer,” Cancer Cell, vol. 23, no. 3, pp. 406–420, 2013.

J. Krois et al., “Deep learning for the radiographic detection of periodontal bone loss,” Sci. Rep., vol. 9, no. 1, pp. 1–6, 2019.

A. Kumar, H. S. Bhadauria, and A. Singh, “Descriptive analysis of dental X-ray images using various practical methods: A review,” PeerJ Comput. Sci., vol. 7, p. e620, 2021.

Y.-C. Mao et al., “Caries and restoration detection using bitewing film based on transfer learning with CNNs,” Sensors, vol. 21, no. 13, p. 4613, 2021.

F. Schwendicke, T. Golla, M. Dreher, and J. Krois, “Convolutional neural networks for dental image diagnostics: A scoping review,” J. Dent., vol. 91, p. 103226, 2019.

A. E. Rad, M. S. M. Rahim, H. Kolivand, and A. Norouzi, “Automatic computer-aided caries detection from dental x-ray images using intelligent level set,” Multimed. Tools Appl., vol. 77, no. 21, pp. 28843–28862, 2018.

M. Khan, M. Nag, T.-U. G. Mir, and S. Dhiman, “Dental Image Analysis Approach Integrates Dental Image Diagnosis,” Int. J. Curr. Res. Rev., vol. 12, pp. 47–52, 2020, doi: 10.31782/IJCRR.2020.12166.

J. Yang, Y. Xie, L. Liu, B. Xia, Z. Cao, and C. Guo, “Automated Dental Image Analysis by Deep Learning on Small Dataset,” in Proceedings - International Computer Software and Applications Conference, 2018, vol. 1, pp. 492–497, doi: 10.1109/COMPSAC.2018.00076.

J. Shashikala and N. Thangadurai, “Evolution of Contrast and Illumination Adjustment Techniques for Dental Imaging to Assist Effective Implant,” in Computer Science On-line Conference, 2021, pp. 100–109.

D. Milošević, M. Vodanović, I. Galić, and M. Subašić, “Automated estimation of chronological age from panoramic dental X-ray images using deep learning,” Expert Syst. Appl., vol. 189, p. 116038, 2022.

Santony, J., Harlan, J., Rizki, S. D., Yuhandri, Y., & Na'am, J. (2020). Edge detection of cavity for identification tuberculosis patient in thorax X-ray image. TEM Journal, 9(1), 67-72.

. Yunus, Y., Harlan, J., Santony, J., Hidayat, R., & Naam, J. (2020). Enhancement on enlarge image for identification lumbar radiculopathy at magnetic resonance imaging. TEM Journal, 649-655.

Na'am, J., Pranata, F. S., Hidayat, R., Adif, A. M., & Ellyzarti, E. (2021). Automated Identification Model of Ground-Glass Opacity in CT-Scan Image by COVID-19. International Journal on Advanced Science, Engineering and Information Technology, 11(2), 595-602.

. Narulita, D., & Yuhandri, Y. (2021). Sistem Pakar Dalam Menganalisis Tingkat Akurasi Keparahan Penyakit Erosi Gigi Menggunakan Metode Certainty Factor. Jurnal Informasi dan Teknologi, 239-244

Downloads

Published

2022-03-31

How to Cite

Sumijan, & Arlis, S. (2022). Pengembangan Ekstraksi dalam Identifikasi Kelainan Gigi pada Citra Dental X-ray imaging (DXRI) . Jurnal KomtekInfo, 9(1), 34–40. https://doi.org/10.35134/komtekinfo.v9i1.283

Issue

Section

Articles