Image Edge Detection Capture Zoom for Facial Recognition Using Gradient Operators

Authors

  • Febri Hadi Universitas Putra Indonesia Yptk Padang
  • Sumijan Universitas Putra Indonesia YPTK Padang

DOI:

https://doi.org/10.35134/komtekinfo.v9i3.303

Keywords:

Edge Detection, Facial Recognition, Image, Capture Zoom, Gradient Operators

Abstract

Imagery on edge detection is a process that will display the edges of an image. Basically, edge detection is one of the techniques for the analysis of image quality in the spatial domain and is also one of the initial process in digital image processing. Edge detection serves to detect the border line of an object contained in the image. This study aims to identify and recognize face pattern objects in the capture zoom image. To perform face identification begins with collecting image data, image processing, image edge detection, thinning of the image, and identification process using the template matching method. The method used in edge detection uses 3 methods, namely Sobel, Roberts and Prewitt which are gradient operators to detect edges in facial images. The dataset used is image capture zoom. The trial was carried out in two stages, namely the identification of the face shape and the identification of the edges of the face. The conclusion of the study is that the Roberts operator is the operator that finds the least edge patterns in facial images than the other two operators, namely Prewitt and Sobel. Meanwhile, the Sobel operator produces edge patterns that are better in quality and quantity than using the Roberts and Prewitt operators.

References

Li, G., Hou, Y., & Wu, A. (2017). Fourth Industrial Revolution: technological drivers, impacts and coping methods. Chinese Geographical Science, 27(4), 626-637. doi: 10.1007/s11769-017-0890-x.

Alrahawe, E. A., Humbe, V. T., & Shinde, G. N. (2021). A Biometric Technology‐Based Framework for Tackling and Preventing Crimes. Intelligent Data Analytics for Terror Threat Prediction: Architectures, Methodologies, Techniques and Applications, 133-160. doi :10.1002/9781119711629.ch7.

Chu, S. L., Chen, C. F., & Zheng, Y. C. (2022). CFSM: a novel frame analyzing mechanism for real-time face recognition system on the embedded system. Multimedia Tools and Applications, 81(2), 1867-1891. doi: 10.1007/s11042-021-11599-0.

Hardiyanto, D., & Sartika, D. A. (2018). Optimalisasi Metode Deteksi Wajah berbasis Pengolahan Citra untuk Aplikasi Identifikasi Wajah pada Presensi Digital. Setrum: Sistem Kendali-Tenaga-elektronika-telekomunikasi-komputer, 7(1), 107-116. doi: 10.36055/setrum.v7i1.3367.

Lubis, F. A., Sunandar, H., Ginting, G. L., & Sianturi, L. T. (2016). Implementasi Metode Speed Up Features Dalam Mendeteksi Wajah. JURIKOM (Jurnal Riset Komputer), 3(4). doi: 10.30865/jurikom.v3i4.333.

Budi, A., & Maulana, H. (2018). Pengenalan Citra Wajah Sebagai Identifier Menggunakan Metode Principal Component Analysis (PCA). Jurnal Teknik Informatika UIN Syarif Hidayatullah, 9(2), 133531. doi: 10.15408/jti.v9i2.5608.

Rahman, M. R., Dasuki, M. D., & Hidayatullah, S. H. (2018). Analisa Perbandingan Operator Gradien Untuk Deteksi Tepi Pada Citra Wajah. JUSTINDO (Jurnal Sistem dan Teknologi Informasi Indonesia), 3(1), 9-14. doi: 10.32528/justindo.v3i1.2203

Gadekallu, T. R., Iwendi, C., Wei, C., & Xin, Q. (2021). Identification of malnutrition and prediction of BMI from facial images using real-time image processing and machine learning. IET Image Process, 647-58. doi: 10.1049/ipr2.12222.

Erwin, E. (2020). Perancangan Sistem Pengolahan Citra Untuk Menentukan Bobot Kerbau Menggunakan Metode Canny Edge Detection. Informasi dan Teknologi Ilmiah (INTI), 7(2), 175-181. http://ejurnal.stmik-budidarma.ac.id/index.php/inti/article/view/2383/1764.

Raja, M., & Lakshmi Priya, G. G. (2022). Using virtual reality and augmented reality with ICT tools for enhancing quality in the changing academic environment in COVID-19 pandemic: An empirical study. In Technologies, Artificial Intelligence and the Future of Learning Post-COVID-19 (pp. 467-482). Springer, Cham. doi: 10.1007/978-3-030-93921-2_26.

Dorgham, O. M., Alweshah, M., Ryalat, M. H., Alshaer, J., Khader, M., & Alkhalaileh, S. (2021). Monarch butterfly optimization algorithm for computed tomography image segmentation. Multimedia Tools and Applications, 80(20), 30057-30090. doi: 10.1007/s11042-020-10147-6.

Kumawat, A., & Panda, S. (2021). A robust edge detection algorithm based on feature-based image registration (FBIR) using improved canny with fuzzy logic (ICWFL). The Visual Computer, 1-22. doi: 10.1007/s00371-021-02196-1.

Pangaribuan, H. (2019). Optimalisasi Deteksi Tepi Dengan Metode Segmentasi Citra. Journal Information System Development (ISD), 4(1). https://ejournal-medan.uph.edu/index.php/isd/article/view/220/91.

Sutikno, A., Utami, E., & Sunyoto, A. (2017). Penerapan metode morfologi gradien untuk perbaikan kualitas deteksi tepi pada citra motif batik. Respati, 9(26). doi: 10.35842/jtir.v9i26.91

Supriyatin, W. (2020). Perbandingan Metode Sobel, Prewitt, Robert dan Canny pada Deteksi Tepi Objek Bergerak. Ilk. J. Ilm, 12(2), 112-120. doi: 10.33096/ilkom.v12i2.541.112-120.

Luo, Z., Tang, Z., Jiang, L., & Wang, C. (2022). An underwater-imaging-model-inspired no-reference quality metric for images in multi-colored environments. Expert Systems with Applications, 191, 116361. doi: 10.1016/j.eswa.2021.116361.

Kim, I. H., Liu, Y. H., Pallister, S., Pol, W., Roberts, S., & Lee, E. (2022). Fault-tolerant resource estimate for quantum chemical simulations: Case study on Li-ion battery electrolyte molecules. Physical Review Research, 4(2), 023019. doi: 10.1103/PhysRevResearch.4.023019

Downes, D. J., Beagrie, R. A., Gosden, M. E., Telenius, J., Carpenter, S. J., Nussbaum, L., ... & Hughes, J. R. (2021). High-resolution targeted 3C interrogation of cis-regulatory element organization at genome-wide scale. Nature communications, 12(1), 1-15.

Yang, D., Peng, B., Al-Huda, Z., Malik, A., & Zhai, D. (2022). An overview of edge and object contour detection. Neurocomputing. doi: 10.1016/j.neucom.2022.02.079.

Fan, P., Zhou, R. G., Hu, W., & Jing, N. (2019). Quantum image edge extraction based on classical Sobel operator for NEQR. Quantum Information Processing, 18(1), 1-23. doi: 10.1007/s11128-018-2131-3.

Burzyński, S. (2021). On FEM analysis of Cosserat-type stiffened shells: static and stability linear analysis. Continuum Mechanics and Thermodynamics, 33(4), 943-968. doi: 10.1007/s00161-020-00928-7.

Meng, B. C. C., Damit, D. S. A., & Damanhuri, N. S. (2021). Comparative studies of multiscale edge detection using different edge detectors for MRI thigh. Bulletin of Electrical Engineering and Informatics, 10(4), 1979-1986. Doi: 10.11591/eei.v10i4.2220.

Srujana, P., Priyanka, J., PATNAIKUNI, V. S., & VEJENDLA, N. (2021, April). Edge Detection with different Parameters in Digital Image Processing using GUI. In 2021 5th International Conference on Computing Methodologies and Communication (ICCMC) (pp. 795-802). IEEE. Doi: 10.1109/ICCMC51019.2021.9418327.

Downey-Wall, A. M., Cameron, L. P., Ford, B. M., McNally, E. M., Venkataraman, Y. R., Roberts, S. B., ... & Lotterhos, K. E. (2020). Ocean acidification induces subtle shifts in gene expression and DNA methylation in mantle tissue of the Eastern oyster (Crassostrea virginica). Frontiers in Marine Science, 7, 566419. doi: 10.3389/fmars.2020.566419.

Shah, B. K., Kedia, V., Raut, R., Ansari, S., & Shroff, A. (2020). Evaluation and Comparative Study of Edge Detection Techniques. IOSR Journal of Computer Engineering, 22(5), 6-15. doi: 10.9790/0661-2205030615.

Al-Musawi, A. K., Anayi, F., & Packianather, M. (2020). Three-phase induction motor fault detection based on thermal image segmentation. Infrared Physics & Technology, 104, 103140. doi : 10.1016/j.infrared.2019.103140.

Kumawat, A., & Panda, S. (2021). A robust edge detection algorithm based on feature-based image registration (FBIR) using improved canny with fuzzy logic (ICWFL). The Visual Computer, 1-22. doi : 10.1007/s00371-021-02196-1.

Menaka, R., Janarthanan, R., & Deeba, K. (2020). FPGA implementation of low power and high speed image edge detection algorithm. Microprocessors and Microsystems, 75, 103053. doi : 10.1016/j.micpro.2020.103053

Downloads

Published

2022-09-30

How to Cite

Hadi, F., & Sumijan. (2022). Image Edge Detection Capture Zoom for Facial Recognition Using Gradient Operators. Jurnal KomtekInfo, 9(3), 100–105. https://doi.org/10.35134/komtekinfo.v9i3.303

Issue

Section

Articles