Optimalisasi Model Klasifikasi Sentimen Netizen Terhadap Merek Tas Luar Negeri
DOI:
https://doi.org/10.35134/komtekinfo.v10i1.360Keywords:
Sentiment Analysis, Brand, Machine Learning, Classification, SMOTE, Sentimen Analisis, Merek, Pembelajaran Mesin, KlasifikasiAbstract
AbstractResearch on text mining has grown more than ever in various sectors. Public figures have also grown in interest towards the field and have the tendency to get to know more about consumers’ perceptions toward relevant goods and the reputation of an individual in social media. Sentiment analysis is a state-of-the-art technique that can be utilized to evaluate such trends or general views, for instance the reputation of a fashion brand. The dataset is built upon the crawled tweets that are relevant with the required topics which have the purpose to analyze the preferred fashion brand of the public. This study shows that the public leads to a positive notion toward foreign bag brands. The algorithms that are being compared includes Logistic Regression, Multinomial Naïve Bayes, Decision Tree, K-Nearest Neighbors, Random Forest, and Support Vector Machine. Support Vector Machine provides the best model which reaches 69% in accuracy. The Synthetic Minority Oversampling Technique (SMOTE) was also conducted to improve the model. Result shows that the Support Vector Machine model has successfully increased its accuracy by 13%, reaching an accuracy of 82%.
Keywords: Sentiment Analysis, Brand, Machine Learning, Classification, SMOTE
AbstrakPenelitian mengenai text mining telah mengalami peningkatan dibanding sebelumnya di dalam berbagai sektor. Figur publik juga semakin tertarik terhadap bidang tersebut dan memiliki kecenderungan untuk mengetahui lebih banyak mengenai persepsi konsumen terhadap suatu barang dan mengenai reputasi seseorang di media sosial. Sentimen analisis merupakan sebuah teknik state-of-the-art yang dapat digunakan untuk mengevaluasi suatu tren atau pandangan umum mengenai suatu hal, misalnya reputasi sebuah merek fashion. Sumber himpunan data yang digunakan pada penelitian ini dibuat berdasarkan crawling tweet yang relevan dengan topik yang dibutuhkan, yang bertujuan untuk menganalisis merek fashion yang disukai oleh masyarakat. Penelitian ini menunjukkan bahwa persepsi masyarakat mengarah pada persepsi positif terhadap merek tas luar negeri. Pada penelitian ini, beberapa algoritma digunakan sebagai perbandingan, antara lain Logistic Regression, Multinomial Naïve Bayes, Decision Tree, K-Nearest Neighbors, Random Forest, dan Support Vector Machine. Hasil pengujian model menunjukkan algoritma Support Vector Machine memiliki performa terbaik dengan accuracy sebesar 69%. Kemudian digunakan teknik Synthetic Minority Oversampling Technique (SMOTE) untuk meningkatkan performa dari model. Hasil menunjukkan bahwa model algoritma Support Vector Machine telah berhasil ditingkatkan dengan accuracy sebesar 13%, mencapai accuracy sebesar 82%.
Kata kunci: Sentimen Analisis, Merek, Pembelajaran Mesin, Klasifikasi, SMOTE
References
Hidapenta, D., & Dewi, D. A. (2021). Peran Pkn Mengatasi Fenomena Kecintaan Produk Luar Yang Terjadi Di Indonesia. Jurnal Kewarganegaraan, 5(1), 168–175. https://doi.org/10.31316/jk.v5i1.1401
Yanuarsari, D. H. (2015). Analisis Minat Beli Wanita Terhadap Produk Tas Bermerek Original di Tengah Komoditi Produksi Tas Bermerek Tiruan Produksi Produsen Lokal. ANDHARUPA: Jurnal Desain Komunikasi Visual & Multimedia, 1(02), 110–121. https://doi.org/10.33633/andharupa.v1i02.961
Vijay, S., Prashar, S., & Gupta, S. (2019). An examination of the role of review valence and review source in varying consumption contexts on purchase decision. Journal of Retailing and Consumer Services, 52(January), 101734. https://doi.org/10.1016/j.jretconser.2019.01.003
Chetioui, Y., Benlafqih, H., & Lebdaoui, H. (2020). How fashion influencers contribute Influencers to consumers ’ purchase intention. 24(3), 361–380. https://doi.org/10.1108/JFMM-08-2019-0157
Yaacob, A., Gan, J. L., & Yusuf, S. (2021). The Role of Online Consumer Review, Social Media Advertisement and Influencer Endorsement on Purchase Intention of Fashion Apparel during COVID-19. Journal of Content, Community & Communication, 14(8), 17–33. https://doi.org/10.31620/JCCC.12.21/03
Lee, M., Cai, Y. (Maggie), DeFranco, A., & Lee, J. (2020). Exploring influential factors affecting guest satisfaction: Big data and business analytics in consumer-generated reviews. Journal of Hospitality and Tourism Technology, 11(1), 137–153. https://doi.org/10.1108/JHTT-07-2018-0054
Weisstein, F. L., Song, L., Andersen, P., & Zhu, Y. (2017). Examining impacts of negative reviews and purchase goals on consumer purchase decision. Journal of Retailing and Consumer Services, 39(June), 201–207. https://doi.org/10.1016/j.jretconser.2017.08.015
Diekson, Z. A., Prakoso, M. R. B., Putra, M. S. Q., Syaputra, M. S. A. F., Achmad, S., & Sutoyo, R. (2023). Sentiment analysis for customer review: Case study of Traveloka. Procedia Computer Science, 216(2022), 682–690. https://doi.org/10.1016/j.procs.2022.12.184
Prananda, A. R., & Thalib, I. (2020). Sentiment Analysis for Customer Review: Case Study of GO-JEK Expansion. Journal of Information Systems Engineering and Business Intelligence, 6(1), 1. https://doi.org/10.20473/jisebi.6.1.1-8
Rambocas, M., & Pacheco, B. G. (2018). Online sentiment analysis in marketing research: a review. Journal of Research in Interactive Marketing, 12(2), 146–163. https://doi.org/10.1108/JRIM-05-2017-0030
Lee, D., Jo, J.-C., & Lim, H.-S. (2017). User Sentiment Analysis on Amazon Fashion Product Review Using Word Embedding. Journal of the Korea Convergence Society, 8(4), 1–8. https://doi.org/10.15207/jkcs.2017.8.4.001
Pantano, E., Giglio, S., & Dennis, C. (2019). Making sense of consumers’ tweets: Sentiment outcomes for fast fashion retailers through Big Data analytics. International Journal of Retail and Distribution Management, 47(9), 915–927. https://doi.org/10.1108/IJRDM-07-2018-0127
Susilayasa, I. M. A., Eka Karyawati, A. A. I., Astuti, L. G., Rahning Putri, L. A. A., Arta Wibawa, I. G., & Ari Mogi, I. K. (2022). Analisis Sentimen Ulasan E-Commerce Pakaian Berdasarkan Kategori dengan Algoritma Convolutional Neural Network. JELIKU (Jurnal Elektronik Ilmu Komputer Udayana), 11(1), 1. https://doi.org/10.24843/jlk.2022.v11.i01.p01
Muslim, M. A., Dasril, Y., Alamsyah, A., & Mustaqim, T. (2021). Bank predictions for prospective long-term deposit investors using machine learning LightGBM and SMOTE. Journal of Physics: Conference Series, 1918(4). https://doi.org/10.1088/1742-6596/1918/4/042143
Peffers, K., Tuunanen, T., Gengler, C. E., Rossi, M., Hui, W., Virtanen, V., & Bragge, J. (2020). Design Science Research Process: A Model for Producing and Presenting Information Systems Research. ArXiv, abs/2006.0.
Huda, M. N. (2023). Bag Brands Sentiment Dataset [Data set]. Zenodo. https://doi.org/10.5281/zenodo.7679325
Lourdusamy, R., & Abraham, S. (2018). A Survey on Text Pre-processing Techniques and Tools. International Journal of Computer Sciences and Engineering, 06(03), 148–157. https://doi.org/10.26438/ijcse/v6si3.148157
Turki, T., & Roy, S. S. (2022). Novel Hate Speech Detection Using Word Cloud Visualization and Ensemble Learning Coupled with Count Vectorizer. Applied Sciences (Switzerland), 12(13). https://doi.org/10.3390/app12136611
Pamungkas, M. R. S. P., Huda, M. N., Fauzan, D. A., Itsna, A. H., & Al-Hijri, F. M. (2022). Sistem Klasifikasi Otomatis Dengan Konsep Machine Learning As A Service ( MLaaS ) Pada Kasus Pesan Berindikasi Cyberbullying. ILKOMNIKA: Journal of Computer and Applied Informatics, 4(3), 252–261. https://doi.org/10.28926/ilkomnika.v4i3.522
Chawla, N. V., Bowyer, K. W., Hall, L. O., Department, & Kegelmeyer, W. P. (2002). SMOTE: Synthetic Minority Over-sampling Technique. Journal of Artificial Intelligence Research (JAIR), 16, 321–357. https://doi.org/10.1613/jair.953
Alkharabsheh, K., Alawadi, S., Kebande, V. R., Crespo, Y., Fernández-Delgado, M., & Taboada, J. A. (2022). A comparison of machine learning algorithms on design smell detection using balanced and imbalanced dataset: A study of God class. Information and Software Technology, 143, 106736. https://doi.org/10.1016/j.infsof.2021.106736
Kabir, A. I., Ahmed, K., & Karim, R. (2020). Word Cloud and Sentiment Analysis of Amazon Earphones Reviews with R Programming Language. Informatica Economica, 24(4/2020), 55–71. https://doi.org/10.24818/issn14531305/24.4.2020.05
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2023 Jurnal Komtekinfo

This work is licensed under a Creative Commons Attribution 4.0 International License.


