Simulasi Metode Monte Carlo untuk Mengatur Sistem Antrian Truk

Authors

  • Dwana Abdi Juliantho Universitas Putra Indonesia YPTK Padang
  • Gunadi Widi Nurcahyo Universitas Putra Indonesia YPTK Padang
  • Billy Hendrik Universitas Putra Indonesia YPTK Padang

DOI:

https://doi.org/10.35134/komtekinfo.v11i3.552

Keywords:

Technology Information, Simulation, Prediction, Queue, Monte Carlo

Abstract

This research focuses on optimizing pozzolan truck queue management at PT. Danas Putra Mandiri through the application of the Monte Carlo method. The main objective of this research is to develop and implement a simulation application that is able to predict and calculate the average availability of trucks in a certain time unit, with the ultimate goal of increasing the company's operational efficiency. In industries that rely on the transportation of raw materials such as pozzolan, effective truck queue management is key to avoiding distribution delays and reducing operational costs. A queue is a service from one or more services that is caused by the need for services exceeding the capacity of the service or service facilities, so that customers who arrive cannot immediately receive service due to busyness in the service. The method used in this research is the Monte Carlo method. Monte Carlo is an experiment of various elements of probability using random samples. The Monte Carlo method is useful for solving quantitative problems with real or physical processing. This method has the ability to simulate and manage queues that occur in companies. PT Danas Putra Mandiri is one of the companies operating in the mining sector which supplies pozzolan to PT Semen Padang. The pozzolan delivery process uses trucks. The delivery process using trucks can affect the availability of the number of trucks in the company. The data used in this research is data from January 2023 - December 2023 with a total of 1619 data. Data taken through the admin of PT. DANAS PUTRA MANDIRI. Based on simulation predictions of queues on trucks, results were obtained with an average accuracy of 80.6%. The queuing simulation results show that the application of the Monte Carlo method can effectively reduce truck waiting times and increase the availability of trucks for rental, which ultimately contributes to increasing the company's operational efficiency.

References

O. Veza, A. L. Setyabudhi, N. Y. Arifin, dan S.Agustini, “Journal of Computer Networks , Architecture and High Performance Computing Simulation Modeling System in Determining the Amount of Oil Inventory Journal of Computer Networks , Architecture and High Performance Computing,” vol. 5, no. 1, hal. 110–119, 2023.

Veza, O., Setyabudhi, A. L., Arifin, N. Y., & Agustini, S. (2023). Simulation Modeling System in Determining the Amount of Oil Inventory. Journal of Computer Networks, Architecture and High Performance Computing, 5(1), 110-119.

Prahasti, A. E., Yuanita, T., & Rahayu, R. P. (2022). Computer Aided Drug Discovery Utilization in Conservative Dentistry. Journal of International Dental and Medical Research, 15(2), 899-903.

Anggraini, S. D., & Nurcahyo, G. W. (2021). Prediksi Peningkatan Jumlah Pelanggan dengan Simulasi Monte Carlo. Jurnal Informatika Ekonomi Bisnis, 95-100.

Ihksan, M., Defit, S., & Yunus, Y. (2021). Monte Carlo Simulation in Predicting the Level of Culinary Sales Revenue (Case Study at Radja Minas Padang). Jurnal Informatika Ekonomi Bisnis, 3, 8–11. https://doi.org/10.37034/infeb.v3i1.63

Agustini, “Pemodelan dan Simulasi Monte Carlo dalam Identifikasi Kebutuhan Bahan Bakar Minyak (BBM),” J. Inform. Ekon. Bisnis, vol. 4, no. 3, hal. 90–95, 2022, doi: 10.37034/infeb.v4i3.149.

Prawita, R., Sumijan, S., & Nurcahyo, G. W. (2021). Simulasi Metode Monte Carlo dalam Menjaga Persediaan Alat Tulis Kantor (Studi Kasus di IAIN Batusangkar). Jurnal Informatika Ekonomi Bisnis, 3, 72–77. https://doi.org/10.37034/infeb.v3i2.69

A. E. Syaputra dan Y. S. Eirlangga, “Akumulasi dan Prediksi Tingkat Penjualan Minuman dengan Menerapkan Metode Monte Carlo,” J. Inf. dan Teknol., vol. 4, no. 3, hal. 1–6, 2022, doi: 10.37034/jidt.v5i1.225.

R. W. Dari, “Prediksi Tingkat Penjualan Pupuk Urea dengan Metode Monte Carlo,” J. Inf. dan Teknol., vol. 4, no. 4, hal. 271–275, 2022, doi: 10.37034/jidt.v4i4.251.

M. H. S. Kurniawan dan Dwi Septiandini Putri, “Implemetation of Queue Theory and Monte Carlo Simulation on the Number of Covid-19 Patients in Batam,” EKSAKTA J. Sci. Data Anal., vol. 4, no. 2, hal. 30–39, 2023, doi: 10.20885/eksakta.vol4.iss2.art4.

A. E. Syaputra dan Y. S. Eirlangga, “Prediksi Tingkat Kunjungan Pasien dengan Menggunakan Metode Monte Carlo,” J. Inf. dan Teknol., vol. 4, no. 2, hal. 97–102, 2022, doi: 10.37034/jidt.v4i2.202.

Dwika, R. (2022). Penerapan Metode Monte Carlo pada Simulasi Prediksi Jumlah Calon Mahasiswa Baru Universitas Muhammadiyah Bengkulu: Penerapan Metode Monte Carlo Pada Simulasi Prediksi Jumlah Calon Mahasiswa Baru Universitas Muhmammadiyah Bengkulu. Jurnal PROCESSOR, 17(2), 74-81.

Batholomew, O. O., Mageto, T., & Malenje, B. Analysis of a Queuing System in a National Museum using Monte Carlo simulation.

Cahyono, D. E. (2022). Perancangan Sistem Informasi Antrian Pasien di UPT Puskesmas Kaligesing. Jurnal Ekonomi dan Teknik Informatika, 9(2), 76-81.

Anggraini, S. D., & Nurcahyo, G. W. (2021). Prediksi Peningkatan Jumlah Pelanggan dengan Simulasi Monte Carlo. Jurnal Informatika Ekonomi Bisnis, 95-100.

Downloads

Published

2024-09-30

How to Cite

Juliantho, D. A. ., Nurcahyo, G. W., & Billy Hendrik. (2024). Simulasi Metode Monte Carlo untuk Mengatur Sistem Antrian Truk . Jurnal KomtekInfo, 11(3), 149–156. https://doi.org/10.35134/komtekinfo.v11i3.552

Issue

Section

Articles