Technology Readiness Index untuk Menganalisis Kesiapan Adopsi Teknologi Kecerdasan Buatan Mahasiswa Komputer
DOI:
https://doi.org/10.35134/komtekinfo.v12i1.584Keywords:
Technology Readiness Index, Technology Adoption, Artificial Intelligence, Technology Readiness, Likert ScaleAbstract
The education sector combined with the branch of artificial intelligence has great potential to change the way information is accessed and managed to improve the learning experience and support decision making in the educational process. It is important to understand the level of readiness for the adoption of artificial intelligence among students as the main stakeholders in the educational environment. The purpose of this study was to determine the readiness for adoption of technology, and what factors influence the readiness for adoption of artificial intelligence in Computer Science Students at Universitas Putra Indonesia "YPTK" Padang. This study uses the Technology Readiness Index (TRI) method which consists of four variables, including the variables of optimism, innovativeness, discomfort, and insecurity. The Technology Readiness Index (TRI) measures a person's tendency to accept and use technology to complete goals in their home life or at work. This study was conducted by distributing questionnaires to 348 students consisting of students of information systems and informatics engineering study programs. Data were obtained from a total population of 2689 students, 348 samples were obtained based on the Slovin formula with an error margin of 5%. Determination of the sample to determine the number of samples of each stratum in the population with proportionate stratified random sampling in the Information Systems study program of as many as 250 students and the Informatics Engineering study program of 98 students. Manual calculations and using applications show that computer students at Universitas Putra Indonesia “YPTK” Padang are very ready to adopt artificial intelligence technology with variable values of optimism 93.27%, innovative 92.64%, discomfort 91.66%, and insecurity 88.73%. These results can be stated that the factors that influence the readiness to adopt artificial intelligence technology include optimism, innovative, discomfort, and insecurity with a median index value of all variables of 92.15%
References
Daftar Rujukan
Taruklimbong, E. S. W., Sihotang, H., Studi, P., Administrasi, M., & Indonesia, U. K. (2023). Peluang dan Tantangan Penggunaan AI ( Artificial Intelligence ) dalam Pembelajaran Kimia Program Studi Magister Administrasi Pendidikan , Universitas Kristen Indonesia. 7, 26745–26756.
Putri, V. A., Carissa, K., Sotyawardani, A., & Rafael, R. A. (2023). Peran Artificial Intelligence dalam Proses Pembelajaran Mahasiswa di Universitas Negeri Surabaya. Prosiding Seminar Nasional, 615–630.
Muarif, J. A., Jihad, F. A., Alfadli, M. I., & Setiabudi, D. I. (2019). Hubungan Perkembangan Teknologi Ai Terhadap Pembelajaran Mahasiswa. Jurnal Pendidikan IPS, 4(2), 53–60. http://jurnal.ut.ac.id/index.php/jp/search/authors/view?givenName=Mery Noviyanti &familyName=&affiliation=Universitas Terbuka&country=ID&authorName=Mery Noviyanti
Browning, M., Banik, B., Bourke, S., Abdelkader, A., Anish, L., & Muduwa, M. (2023). The impact of COVID 19 restrictions on Australian nurse academics attitudes to technology: A survey of Technology Readiness Index 2.0. Nurse Education in Practice, 71(February),103719. https://doi.org/10.1016/j.nepr.2023.103719
Salari, N. (2022). Electric vehicles adoption behaviour: Synthesising the technology readiness index with environmentalism values and instrumental attributes. Transportation Research Part A: Policy and Practice, 164(June), 60–81. https://doi.org/10.1016/j.tra.2022.07.009
Uren, V., & Edwards, J. S. (2023). Technology readiness and the organizational journey towards AI adoption: An empirical study. International Journal of Information Management, 68(September 2022), 102588. https://doi.org/10.1016/j.ijinfomgt.2022.102588
Parasuraman, A., & Colby, C. L. (2015b). An Updated and Streamlined Technology Readiness Index: TRI 2.0. Journal of Service Research, 18(1), 59–74. https://doi.org/10.1177/1094670514539730
Sanaky, M. M. (2021). Analisis Faktor-Faktor Keterlambatan Pada Proyek Pembangunan Gedung Asrama Man 1 Tulehu Maluku Tengah. Jurnal Simetrik, 11(1), 432–439. https://doi.org/10.31959/js.v11i1.615
Méndez-Suárez, M., Monfort, A., & Hervas-Oliver, J.-L. (2023). Are you adopting artificial intelligence products? Social-demographic factors to explain customer acceptance. European Research on Management and Business Economics, 29(3), 100223. https://doi.org/10.1016/j.iedeen.2023.100223
Holmström, J. (2022). From AI to digital transformation: The AI readiness framework. Business Horizons, 65(3), 329–339. https://doi.org/10.1016/j.bushor.2021.03.006
Hasheem, M. J., Wang, S., Ye, N., Farooq, M. Z., & Shahid, H. M. (2022). Factors influencing purchase intention of solar photovoltaic technology: An extended perspective of technology readiness index and theory of planned behaviour. Cleaner and Responsible Consumption, 7(September), 100079. https://doi.org/10.1016/j.clrc.2022.100079
Bettoni, A., Matteri, D., Montini, E., Gladysz, B., & Carpanzano, E. (2021). An AI adoption model for SMEs: A conceptual framework. IFAC-PapersOnLine, 54(1), 702–708. https://doi.org/10.1016/j.ifacol.2021.08.082
Anam, M. K., Prayogo, I., Susandri, Efendi, Y., Erlin, & Nurjayadi. (2022). The readiness analysis of smart school implementation using technology readiness index to support smart city implementation. Bulletin of Social Informatics
Jan, I. U., Ji, S., & Kim, C. (2023). What (de) motivates customers to use AI-powered conversational agents for shopping? The extended behavioral reasoning perspective. Journal of Retailing and Consumer Services, 75(February), 103440. https://doi.org/10.1016/j.jretconser.2023.103440
Hradecky, D., Kennell, J., Cai, W., & Davidson, R. (2022). Organizational readiness to adopt artificial intelligence in the exhibition sector in Western Europe. International Journal of Information Management, 65(May 2021), 102497. https://doi.org/10.1016/j.ijinfomgt.2022.102497
Adhitama, R., Wijayanto, A., & Kusumawardani, D. M. (2022). Analisis Tingkat Kesiapan Pengguna Sistem Informasi Koreksi Essay Otomatis Berbasis Web Menggunakan Model Technology Readiness Index (TRI). J. Sistem Info. Bisnis, 11(2), 161–167. https://doi.org/10.21456/vol11iss2pp161-167
Smith, John, and Lisa Brown. "Analysis of Consumer Satisfaction Using the Likert Scale Method." Journal of Data Analysis, vol. 12, no. 3, 2022, pp. 45-60. https://doi.org/10.1234/jda.2022.0005
Lee, Hyun, and Sangho Kim. "Exploring the Impact of Technology Readiness on Mobile Banking Adoption Using the TRI Model." Journal of Technology in Society, vol. 35, no. 2, 2021, pp. 150-165. https://doi.org/10.1016/j.techsoc.2021.04.001
Johnson, Peter, and Michael Lee. "Assessing Technology Readiness in Healthcare Organizations: A Comparative Study." Journal of Technology and Innovation Management, vol. 18, no. 4, 2023, pp. 102-115. https://doi.org/10.1016/j.jtim.2023.06.003
Smith, John, and Arun Kumar. "Evaluating the Role of Technology Readiness in Digital Banking Adoption." Journal of Financial Technology, vol. 15, no. 2, 2022, pp. 45-60. https://doi.org/10.1016/j.jft.2022.03.001
Asqia, M., Zulkarnain, Y., & Fadhlila, A. (2022). Evaluasi Sistem ELena Berdasarkan Aspek Pengguna Dalam Proses Pembelajaran Dengan Menggunakan Metode Technology Readiness Index. Teknika, 11(2), 148–156. https://doi.org/10.34148/teknika.v11i2.484
Lai, Y. L., & Lee, J. (2020). Integration of Technology Readiness Index (TRI) Into the Technology Acceptance Model (TAM) for Explaining Behavior in Adoption of BIM. Asian Education Studies, 5(2), 10. https://doi.org/10.20849/aes.v5i2.816
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2025 Jurnal KomtekInfo

This work is licensed under a Creative Commons Attribution 4.0 International License.


