Penerapan Algortima K-Means Clustering untuk Optimalisasi Persediaan Liquid Vape Berdasarkan Data Penjualan
DOI:
https://doi.org/10.35134/komtekinfo.v12i1.620Keywords:
Liquid Vape, Data Mining, K-Means Clustering, Stock Management, Sales Pattern AnalysisAbstract
Liquid vape is a liquid in an electronic cigarette (vape) device that contains a mixture of Propylene Glycol (PG), Vegetable Glycerin (VG), flavorings, and contains nicotine. As the use of vapes increases as an alternative to conventional cigarettes, efficient stock management becomes a challenge for vape shops to be able to meet customer needs without experiencing excess or shortage of inventory. Good stock management in a retail business is very important to maintain a balance between demand and product availability. This research aims to optimize liquid vape supplies by analyzing sales patterns. This research method is K-Means Clustering which includes several stages, namely determining the number of clusters, determining the centroid point randomly, calculating the closest distance between data and the centroid using the Euclidean method, grouping data into each cluster, updating the centroid until it is stable, and evaluating the results. The data used in the research is liquid vape sales data from June to November 2024 with a total of 68 product samples. Data processing was carried out manually and testing used RapidMiner software to measure the level of accuracy of the clustering results. The research results show that the K-Means Clustering algorithm is successful in grouping products into three categories: very popular, best selling, and not very popular. 51 products are in the low-selling category, 13 products are in the best-selling category, and 4 products are in the very best-selling category, with a Davies Bouldin value of 0.374%. The application of K-Means Clustering is effective in grouping products according to demand, helps determine the ideal stock amount, reduces the risk of product excesses or shortages, and increases operational efficiency
References
M. F. Haryanti et al., “Pengaruh Data Mining, Strategi Perusahaan Terhadap Laporan Kinerja Perusahaan,” J. Manaj. dan Bisnis, vol. 3, no. 1, pp. 71–90, 2024.
S. Nabilah, “Pengaruh Penggunaan Teknologi Big Data dalam Bisnis Retail Terhadap Keputusan Konsumen,” WriteBox, pp. 1–7, 2023, [Online]. Available: https://scholar.google.com/citations?view_op=view_citation&hl=en&user=ApXhnsoAAAAJ&citation_for_view=ApXhnsoAAAAJ:9yKSN-GCB0IC
Andi Syahrul Ramdana, Kusrini, and E. Pramono, “Penerapan Algoritma K-Means Untuk Manajemen Persediaan Di Perpustakaan,” J. Inform. Teknol. dan Sains, vol. 6, no. 1, pp. 109–114, 2024, doi: 10.51401/jinteks.v6i1.3911.
V. No, J. Hal, M. Dana, A. Syahputra, H. Santoso, and F. Hasyifah, “Implementasi Sistem Pengelolaan Persediaan dengan Algoritma FIFO Pada Gudang Sparepart Sepeda Motor,” vol. 6, no. 1, pp. 168–176, 2024.
F. P. Dewi, P. S. Aryni, and Y. Umaidah, “Implementasi Algoritma K-Means Clustering Seleksi Siswa Berprestasi Berdasarkan Keaktifan dalam Proses Pembelajaran,” JISKA (Jurnal Inform. Sunan Kalijaga), vol. 7, no. 2, pp. 111–121, 2022, doi: 10.14421/jiska.2022.7.2.111-121.
H. Supriyanto et al., “Klasterisasi Data Obat Farmasi Berdasarkan Jumlah Persediaan Clustering Pharmaceutical Drug Data Based on Total Inventory Using the K-Means Method,” vol. 13, no. November, pp. 361–369, 2024, doi: 10.34148/teknika.v13i3.987.
M. A. Sundari, R. Pane, and R. Rohani, “Data Mining Clustering Korban Kejahatan Pelecehan Seksual dengan Kekerasan Berdasarkan Provinsi Menggunakan Metode AHC,” Build. Informatics, Technol. Sci., vol. 5, no. 1, 2023, doi: 10.47065/bits.v5i1.3499.
D. Murni, B. Efendi, and N. Rahmadani, “Implementation of Employee Discipline Clustering At Gotting Sidodadi Village Office Bandar Pasir Mandoge Using K-Means Algorithm,” J. Tek. Inform., vol. 3, no. 2, pp. 295–304, 2022, [Online]. Available: https://doi.org/10.20884/1.jutif.2022.3.2.236
D. Astuti and Muqorobin, “Optimasi Metode K - Means Clustering untuk Pengelompokan Obat Di Puskemas Mertoyudan I Magelang Optimization of K-Means Clustering Method for Drug Grouping at,” vol. 13, pp. 2144–2160, 2024.
R. Fikria and S. Sriani, “Analisis Metode K-Means Clustering Dalam Pengelompokan Penjualan Sembako,” J. Inf. Syst. Res., vol. 5, no. 4, pp. 1464–1471, 2024, doi: 10.47065/josh.v5i4.5699.
G. Triyandana, L. A. Putri, and Y. Umaidah, “Penerapan Data Mining Pengelompokan Menu Makanan dan Minuman Berdasarkan Tingkat Penjualan Menggunakan Metode K-Means,” J. Appl. Informatics Comput., vol. 6, no. 1, pp. 40–46, 2022, doi: 10.30871/jaic.v6i1.3824.
A. W. Aranski, S. Astiti, and R. A. Putra, “Pengaplikasian Data Mining Dalam Mengelompokan Data Penerima Bantuan Subsidi Rumah dengan Menggunakan Metode K-Means Clustering,” vol. 6, no. 1, pp. 480–489, 2024, doi: 10.47065/bits.v6i1.5366.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2025 Jurnal KomtekInfo

This work is licensed under a Creative Commons Attribution 4.0 International License.