Prediksi Jumlah Kunjungan Pasien pada Bidan Praktik Mandiri dengan Jaringan Syaraf Tiruan Backpropagation
DOI:
https://doi.org/10.35134/komtekinfo.v12i1.628Keywords:
Artificial Neural Network, Backpropagation, Patient Visit Prediction, Independent Midwife Practice, MatlabAbstract
Independent Midwives (BPM) are important in providing health services for mothers and children. One of the main challenges in managing BPM is the uncertain fluctuation in patient visits, making it difficult to plan resources, such as medical personnel, drug supplies, and other supporting facilities. If the number of patient visits cannot be predicted properly, the risk of shortages or excess resources becomes higher, which can impact operational efficiency and the quality of health services. Uncertainty in the number of patients can also affect financial planning and readiness to face a surge in visits. Based on this, this study aims to develop a prediction model for the number of patient visits using Artificial Neural Networks (ANN) with the Backpropagation method. The dataset uses data on the number of Antenatal Care (ANC) patient visits over the past three years. The results of the model evaluation were carried out based on the Mean Squared Error (MSE) value and the prediction accuracy level presented more than 94% accuracy level. The evaluation results also obtained an MSE value of 0.0023, and MAPE of 5.62% so that the results can be stated that the model prediction error is within acceptable limits. This predictive model can contribute to assisting BPM in resource planning, improving service efficiency, and strategic decision-making in managing health facilities
References
S. Sonang, A. T. Purba, and S. Sirait, “PREDIKSI PRESTASI MAHASISWA DENGAN MENGGUNAKAN ALGORITMA BACKPROPAGATION,” J. Tek. Inf. dan Komput., vol. 5, no. 1, p. 67, Jun. 2022, doi: 10.37600/tekinkom.v5i1.512.
W. Wahyudin and H. Purwanto, “PREDIKSI KASUS COVID-19 DI INDONESIA MENGGUNAKAN METODE BACKPROPAGATION DAN REGRESI LINEAR,” J. Inf. Syst. Applied, Manag. Account. Res., vol. 5, no. 2, p. 331, May 2021, doi: 10.52362/jisamar.v5i2.420.
Erizke Aulya Pasel, Y. Yuhandri, and G. W. N. Nurcahyo, “The Implementation of Artificial Neural Networks to measure the correlation of teacher’s workload to the number of own learning media,” J. CoSciTech (Computer Sci. Inf. Technol., vol. 4, no. 1, pp. 272–282, 2023, doi: 10.37859/coscitech.v4i1.4757.
N. Soekorini, K. Ummah, A. R. Badrus, R. Aranggraeni, F. Hukum, and F. I. Kesehatan, “Penegakan Hukum Malpraktik Bidan Dalam Pemberian Pelayanan Kebidanan Pada Pasien Law Enforcement of Midwife Malpractice in Providing Midwifery Services to Patients,” pp. 1–9, 2017.
M. N. Fadilah, A. Yusuf, and N. Huda, “Prediksi Beban Listrik Di Kota Banjarbaru Menggunakan Jaringan Syaraf Tiruan Backpropagation,” J. Mat. Murni Dan Terap. Epsil., vol. 14, no. 2, p. 81, 2021, doi: 10.20527/epsilon.v14i2.2961.
O. Nurdiawan and A. Faqih, “Optimisasi Model Backpropagation untuk Meningkatkan Deteksi Kejang Epilepsi pada Sinyal Electroencephalogram,” vol. 9, no. 2, pp. 151–160, 2024.
A. Sujjada, Somantri, A. R. Ramdani, K. Kibtiyah, M. P. Utami, and M. Ridwan Nullah, “Prediksi Nilai Ujian Sekolah Siswa SMK Plus Padjadjaran Berbasis Web Menggunakan Jaringan Syaraf Tiruan Backpropagation,” J. Inf. dan Teknol., vol. 5, no. 2, pp. 151–158, 2023, doi: 10.37034/jidt.v5i2.370.
N. Aulya, “Prediksi Kunjungan Wisata Kota Payakumbuh Menggunakan Metode Jaringan Syaraf Tiruan Backpropagation,” J. Inform. Ekon. Bisnis, vol. 4, pp. 7–9, 2022, doi: 10.37034/infeb.v4i4.157.
J. Veri, “Prediksi Harga Minyak Mentah Menggunakan Jaringan Syaraf Tiruan Crude Oil Price Prediction Using Artificial Neural Network,” vol. 21, no. 3, pp. 503–512, 2022, doi: 10.30812/matrik.v21i3.1382.
D. R. Rochmawati and D. R. Rochmawati, “Prediksi cuaca dengan jaringan syaraf tiruan menggunakan python,” vol. 2, no. 2, 2024.
P. N. Napitupulu, A. R. Damanik, J. E. Napitupulu, and A. Info, “Jurnal JPILKOM ( Jurnal Penelitian Ilmu Komputer ),” vol. 1, no. 1, 2023.
P. Agung Nugroho, “IMPLEMENTASI JARINGAN SYARAF TIRUAN MULTI-LAYER PERCEPTRON UNTUK PREDIKSI PENYINARAN MATAHARI KOTA BANDUNG,” KOMPUTA J. Ilm. Komput. dan Inform., vol. 12, no. 1, 2023.
N. L. Br Sitepu, “Jaringan Saraf Tiruan Memprediksi Nilai Pemelajaran Siswa Dengan Metode Backpropagation ( Studi kasus : SMP Negeri 1 Salapian),” J. Inf. Technol., vol. 1, no. 2, pp. 54–58, 2021, doi: 10.32938/jitu.v1i2.1006.
F. Khairati and H. Putra, “Prediksi Kuantitas Penggunaan Obat pada Layanan Kesehatan Menggunakan Algoritma Backpropagation Neural Network,” J. Sistim Inf. dan Teknol., vol. 4, pp. 128–135, 2022, doi: 10.37034/jsisfotek.v4i3.158.
S. Defit and G. Widi Nurcahyo, “Backpropagation Neural Network Untuk Prediksi Kebutuhan Pemakaian Obat (Kasus Di RSUD dr. Adnaan WD),” J. Ris. Sist. Inf. Dan Tek. Inform. (JURASIK, vol. 9, no. 1, pp. 300–309, 2024, [Online]. Available: https://tunasbangsa.ac.id/ejurnal/index.php/jurasik
E. Ramadhani Putra, G. Widi Nurcahyo, and F. Ilmu Komputer, “Penerapan Jaringan Syaraf Tiruan Dengan Algoritma Backpropagation Untuk Memprediksi Kunjungan Poliklinik (Studi Kasus Di Rumah Sakit Otak Dr. Drs. M. Hatta Bukittinggi),” 2024.
M. F. Mahfuzh and R. V. Yuliantari, “Analisis Penerapan Artificial Neural Network Algoritma Propagasi Balik untuk Meramalkan Harga Saham pada Bursa Efek Indonesia,” J. Appl. Electr. Eng., vol. 6, no. 1, pp. 1–3, 2022, doi: 10.30871/jaee.v6i1.3814.
H. Hambali, M. Safii, I. Komputer, P. Siantar, P. Siantar, and S. Utara, “Penerapan algoritma backpropagation dalam memprediksi jumlah jamaah haji pematang siantar 1,2,” vol. 8, no. 1, pp. 135–143, 2024.
W. Zhang, M. Xu, Y. Feng, Z. Mao, and Z. Yan, “The Effect of Procrastination on Physical Exercise among College Students—The Chain Effect of Exercise Commitment and Action Control,” Int. J. Ment. Health Promot., vol. 26, no. 8, pp. 611–622, 2024, doi: 10.32604/ijmhp.2024.052730.
M. Sari, D. Agustini, and M. Farida, “Model Prediksi Kunjungan Wisata: Mengoptimalkan Arsitektur Algoritma Backpropagation untuk Prediksi Kunjungan Wisata Mancanegara (ASIA),” J. Penerapan Sist. Inf. (Komputer Manajemen), vol. 5, no. 1, pp. 240–254, 2024.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2025 Jurnal Komtekinfo

This work is licensed under a Creative Commons Attribution 4.0 International License.