Penerapan Artificial Neural Network untuk Memprediksi Persediaan Obat Esensial
DOI:
https://doi.org/10.35134/komtekinfo.v12i1.630Keywords:
Artificial Neural Network, Drug Inventory Prediction, Backpropagation, MATLAB, Healthcare ManagementAbstract
The availability of essential medicines is a fundamental factor in ensuring high-quality healthcare services, especially in primary healthcare facilities such as Puskesmas. Inefficient drug inventory management can lead to various issues, including drug shortages that disrupt medical services and overstocking that may result in waste due to expiration. An accurate prediction system is essential to support more effective and efficient drug inventory planning. This study aims to analyze historical drug usage patterns to generate more accurate predictions. The research methodology includes problem identification, data collection, preprocessing, ANN architecture design, implementation, and system evaluation. Historical drug usage data from previous years is used for training and testing, with a division of 70% for training and 30% for testing. The backpropagation algorithm is applied to optimize the model by adjusting parameters such as the number of neurons in the hidden layer, learning rate, and activation function. The study results show that the ANN model with a 12-12-1 architecture achieves a high prediction accuracy, with a Mean Absolute Percentage Error (MAPE) of 2.13% for paracetamol stock. The developed MATLAB application provides an interactive platform for users to input historical data and obtain dynamic stock predictions. This system implementation is expected to help Puskesmas manage drug inventory more effectively, reduce the risks of shortages and overstocking, and improve efficiency in essential drug distribution. This study contributes to the field of health informatics by demonstrating the effectiveness of ANN in drug inventory prediction. Future research may explore hybrid machine learning models or integrate external factors, such as seasonal disease patterns and community demand levels, to enhance predictive accuracy and adaptability.
References
Ahyar.Yamin, A., & Ary Busman, S. (2024). Pemanfaatan Teknologi Informatika Dan Komunikasi Dalam Sumbawa Barat.
Annisa, R., Agustia Rahayuningsih, P., & Fadilah, A. (2024). JITKOM Transformasi Digital di Dunia Farmasi: Aplikasi Web untuk Pengelolaan Persediaan Obat di Apotek. Jurnal Ilmu Teknik Dan Komputer, 08(01), 26–32. https://doi.org/10.22441/jitkom.v8i1.004
Sari, A. M. F., Hadju, L., Isrul, M., & Bone, M. (2024). Evaluasi Sistem Pengelolaan Obat di UPTD Instalasi Farmasi Dinas Kesehatan Kabupaten Kolaka Tahun 2021. Jurnal Pharmacia Mandala Waluya, 3(3), 132–143. https://doi.org/10.54883/jpmw.v3i3.112
Ariska Putri, U., Budi Prasetijo, A., & Tri Purnami, C. (2023). Sistem Informasi Manajemen Logistik Obat di Pelayanan Farmasi Puskesmas : Literature Review. Media Publikasi Promosi Kesehatan Indonesia (MPPKI), 6(6), 1016–1024. https://doi.org/10.56338/mppki.v6i7.3447
Sulistyowati, S., & Rifandi, M. (2023). Analisis Penerapan Sistem Informasi Akuntansi Persediaan Obat-Obatan dan Alat Kesehatan Pada RSU PKU Muhammadiyah Jatinom. ULIL ALBAB : Jurnal Ilmiah Multidisiplin, 2(8), 3562–3574.
Baybo, M. P., Lolo, W. A., & Jayanti, M. (2022). Analisis Pengendalian Persediaan Obat Di Puskesmas Teling Atas. Jurnal Farmasi Medica/Pharmacy Medical Journal (PMJ), 5(1), 7. https://doi.org/10.35799/pmj.v5i1.41434
Arofah, M., Irma Purnamasari, A., & Ali, I. (2024). Implementasi Data Mining Untuk Clustering Jenis Obat Menggunakan Metode Algoritma K-Means Di Uptd Puskesmas Tegal Gubug. JATI (Jurnal Mahasiswa Teknik Informatika), 8(2), 1621–1628. https://doi.org/10.36040/jati.v8i2.8410
Haniasti, S., Happy Putra, D., Indawati, L., & Rosmala Dewi, D. (2023). Gambaran Penggunaan Sistem Informasi Manajemen Puskesmas Dengan Metode Pieces di Puskesmas Kunciran. Jurnal Sosial Dan Sains, 3(2), 138–147. https://doi.org/10.59188/jurnalsosains.v3i2.690
Otaru, A. J., Alhulaybi, Z. A., & Dubdub, I. (2024). Machine Learning Backpropagation Prediction and Analysis of the Thermal Degradation of Poly (Vinyl Alcohol). Polymers, 16(3). https://doi.org/10.3390/polym16030437
Palavar, O., Özyürek, D., & Kalyon, A. (2015). Artificial neural network prediction of aging effects on the wear behavior of IN706 superalloy. Materials & Design, 82, 164–172. https://doi.org/https://doi.org/10.1016/j.matdes.2015.05.055
Dzulfikar, A., Ramsari, N., & Sutjiningtyas, S. (2021). Implementasi Peramalan Penjualan Produk Di Pt. Prima Per Tradea Utama Menggunakan Metode Artificial Neural Network. Jurnal FIKI, XI(2), 2087–2372. http://jurnal.unnur.ac.id/index.php/jurnalfiki
Mahfuzh, M. F., & Yuliantari, R. V. (2022). Analisis Penerapan Artificial Neural Network Algoritma Propagasi Balik untuk Meramalkan Harga Saham pada Bursa Efek Indonesia. Journal of Applied Electrical Engineering, 6(1), 1–3. https://doi.org/10.30871/jaee.v6i1.3814
Thoriq, M. (2022). Peramalan Jumlah Permintaan Produksi Menggunakan Jaringan Saraf Tiruan Algoritma Backpropagation. Jurnal Informasi Dan Teknologi, 4, 27–32. https://doi.org/10.37034/jidt.v4i1.178
Rohman, F. (2022). Prediksi Beban Listrik Dengan Menggunakan Jaringan Syaraf Tiruan Metode Backpropagation. Jurnal Surya Energy, 5(2), 55–60. https://doi.org/10.32502/jse.v5i2.3092
Liya Yuni Astutik, I. S. (2024). Penerapan Artificial Neural Network Untuk Memprediksi Error dalam Perancangan Aplikasi Monitoring Tetes Cairan Infus. 8, 1408–1418. https://doi.org/10.30865/mib.v8i3.7724
Jannah, Z., & Budayawan, K. (2024). Pengembangan Sistem Cerdas Berbasis Data Mining untuk Meningkatkan Akurasi Prediksi Kebutuhan Obat di Puskesmas Parit Rantang. Al-DYAS, 3(1), 467–479. https://doi.org/10.58578/aldyas.v3i1.2736
Fadilah, F., Komarudin, A., & Melina. (2024). PREDIKSI PENJUALAN OBAT BERBASIS ARTIFICIAL NEURAL NETWORK (ANN). 1–23.
Damayanti, I., Hakim, A. R., Subarkah, P., Utami, D. A. B., & Rahayu, P. W. (2024). Prediksi Vaksinasi Terhadap Penambahan Kasus Covid-19 Dengan Neural Network. Decode: Jurnal Pendidikan Teknologi Informasi, 4(1), 326–333. https://doi.org/10.51454/decode.v4i1.354
Nulhakim, P. A., Manullang, S., Matematika, F., Ilmu, D., Alam, P., Studi, P., Komputer, I., Medan, U. N., Network, B. N., & Utara, S. (2024). Prediksi Jumlah Wisatawan Mancanegara Ke Sumatera Utara Berdasarkan Pintu Masuk Utama Menggunakan Algoritma Backpropagation Neural Network. 7(2), 78–89.
Alamsyah, S. S., Maimunah, & Sukmasetya, P. (2024). Prediksi Jumlah Kedatangan Pasien Puskesmas Menggunakan Metode Backpropagation Artificial Neural Network. KLIK: Kajian Ilmiah Informatika Dan Komputer, 4(6), 2842–2849. https://doi.org/10.30865/klik.v4i6.1922
Hazlita, Sarjon Defit, G. W. N. (2024). Backpropagation Neural Network Untuk Prediksi Kebutuhan Pemakaian Obat (Kasus Di RSUD dr. Adnaan WD). Jurnal Riset Sistem Informasi Dan Teknik Informatika (JURASIK, 9(1), 300–309. https://tunasbangsa.ac.id/ejurnal/index.php/jurasik
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2025 Jurnal Komtekinfo

This work is licensed under a Creative Commons Attribution 4.0 International License.