Tweet Sentiment Classification Towards Mobile Services Using Naive Bayes and Support Vector Machine

Authors

  • Izza Syahri Muharram Universitas Islam Negeri Maulana Malik Ibrahim Malang
  • Muhammad Faisal

DOI:

https://doi.org/10.35134/komtekinfo.v12i2.642

Keywords:

Sentiment Analysis, Support Vector Machine, TF-IDF, Twitter, Indonesian Language

Abstract

This research focuses on sentiment classification of Indonesian-language tweets related to mobile service providers by integrating Support Vector Machine (SVM) and Term Frequency-Inverse Document Frequency (TF-IDF) as the main text representation method. The dataset was sourced from Twitter API and public collections, then went through preprocessing, feature extraction, model training, and performance evaluation phases. The SVM model utilizing TF-IDF exhibited perfect evaluation metrics—100% in accuracy, precision, recall, and F1-score—on the test set, indicating excellent proficiency in detecting both positive and negative sentiments. Nevertheless, such flawless results should be interpreted carefully, as they may suggest limited data diversity. This study contributes to the advancement of sentiment analysis techniques for short and informal Indonesian-language texts on social media platforms.

References

A. Ahmad and W. Gata, “Sentimen Analisis Masyarakat Indonesia di Twitter Terkait Metaverse dengan Algoritma Support Vector Machine,” Jurnal JTIK (Jurnal Teknologi Informasi dan Komunikasi), vol. 6, no. 4, Art. no. 4, Mar. 2022, doi: 10.35870/jtik.v6i4.569.

Q. A. Chairunnisa, Y. Herdiyeni, M. K. D. Hardhienata, and J. Adisantoso, “Analisis Sentimen Pengguna Twitter Terhadap Program Vaksinasi Covid-19 di Indonesia Menggunakan Algoritme Support Vector Machine,” JIKA, vol. 9, no. 1, pp. 79–89, May 2022, doi: 10.29244/jika.9.1.79-89.

R. Bharati et al., “SVM-based Sarcasm Detection System: NLP Using Heuristic Approach,” in 2024 8th International Conference on Computing, Communication, Control and Automation (ICCUBEA), Aug. 2024, pp. 1–6. doi: 10.1109/ICCUBEA61740.2024.10774775.

H. A. Rahman, R. Santoso, and T. Widiharih, “Analisis Sentimen Pada Perusahaan Penyedia Jasa Logistik J&T Menggunakan Algoritma Multinomial Naive Bayes dan Support Vector Machine,” Jurnal Gaussian, vol. 12, no. 2, Art. no. 2, Jul. 2023, doi: 10.14710/j.gauss.12.2.242-253.

H. Candra, E. D. Madyatmadja, J. Nathaniel, and M. R. Jonathan, “Sentiment Analysis on Indonesian Telegram Reviews Using Naïve Bayes, SVM, Random Forest, and Boosting Models,” in 2024 8th International Conference on Information Technology, Information Systems and Electrical Engineering (ICITISEE), Aug. 2024, pp. 493–498. doi: 10.1109/ICITISEE63424.2024.10730718.

N. F. Rozy, N. Amini, N. Hakiem, and S. H. Afrizal, “Analysis of Multi-Class Sentiment on Indonesian Twitter Using Support Vector Machine Classification Algorithm with Particle Swarm Optimization,” in Proceedings of the 2023 7th International Conference on Advances in Artificial Intelligence, in ICAAI ’23. New York, NY, USA: Association for Computing Machinery, Jan. 2024, pp. 62–67. doi: 10.1145/3633598.3633609.

Fransiscus and A. S. Girsang, “Sentiment Analysis of COVID-19 Public Activity Restriction (PPKM) Impact using BERT Method,” Dec. 31, 2022. doi: 10.14445/22315381/IJETT-V70I12P226.

F. Koto, J. H. Lau, and T. Baldwin, “IndoBERTweet: A Pretrained Language Model for Indonesian Twitter with Effective Domain-Specific Vocabulary Initialization,” Sep. 10, 2021, arXiv: arXiv:2109.04607. doi: 10.48550/arXiv.2109.04607.

B. AlBadani, R. Shi, and J. Dong, “A Novel Machine Learning Approach for Sentiment Analysis on Twitter Incorporating the Universal Language Model Fine-Tuning and SVM,” Applied System Innovation, vol. 5, no. 1, Art. no. 1, Feb. 2022, doi: 10.3390/asi5010013.

J. Anggraini and D. Alita, “Implementasi Metode SVM Pada Sentimen Analisis Terhadap Pemilihan Presiden (Pilpres) 2024 Di Twitter,” Jurnal Informatika: Jurnal Pengembangan IT, vol. 9, no. 2, Art. no. 2, Aug. 2024, doi: 10.30591/jpit.v9i2.6560.

I. Riadi, A. Fadlil, and M. Murni, “Identifying Hate Speech in Tweets with Sentiment Analysis on Indonesian Twitter Utilizing Support Vector Machine Algorithm,” Khazanah Informatika : Jurnal Ilmu Komputer dan Informatika, vol. 9, no. 2, Art. no. 2, Oct. 2023, doi: https://doi.org/10.23917/khif.v9i2.22470.

A. Irianti, H. Halimah, S. Sutedi, and M. Agariana, “Integration of BERT and SVM in Sentiment Analysis of Twitter/X Regarding Constitutional Court Decision No. 60/PUU-XXII/2024,” Jurnal Teknik Informatika (Jutif), vol. 6, no. 2, Art. no. 2, Apr. 2025, doi: 10.52436/1.jutif.2025.6.2.4068.

P. A. Setiawati, I. M. A. D. Suarjaya, and I. N. P. Trisna, “Sentiment Analysis of Unemployment in Indonesia During and Post COVID-19 on X (Twitter) Using Naïve Bayes and Support Vector Machine,” Journal of Information Systems and Informatics, vol. 6, no. 2, Art. no. 2, Jun. 2024, doi: 10.51519/journalisi.v6i2.713.

N. T. Dinh and V. T. Hoang, “Recent advances of Captcha security analysis: a short literature review,” Procedia Computer Science, vol. 218, pp. 2550–2562, Jan. 2023, doi: 10.1016/j.procs.2023.01.229.

N. Arlim et al., “Sarcasm Detection in Indonesian Tweets Using Hyperbole Features,” in Proceedings of the 2022 International Conference on Computer, Control, Informatics and Its Applications, in IC3INA ’22. New York, NY, USA: Association for Computing Machinery, Feb. 2023, pp. 130–134. doi: 10.1145/3575882.3575908.

I. W. Suardi and I. R. H. Tangkawarow, “ANALISIS SENTIMEN PADA SOSIAL MEDIA TWITTER TERHADAP PEMILU 2024 DENGAN METODE SUPPORT VECTOR MACHINE,” JOURNAL OF INFORMATICS, BUSINESS, EDUCATION AND INNOVATION TECHNOLOGY, vol. 3, no. 1, Art. no. 1, Jan. 2025.

Ma’rufudin and A. Yudhistira, “Analisis Sentimen Petani Milenial Pada Media Sosial X Menggunakan Algortitma Support Vector Machine (SVM),” Jurnal Pendidikan dan Teknologi Indonesia, vol. 5, no. 3, Art. no. 3, Mar. 2025, doi: 10.52436/1.jpti.717.

M. A. Rosid, “Klasifikasi Sarkasme Pada Multimodal Dataset Twitter Pengguna Indonesia Dengan Metode CodeMixed-DL,” doctoral, Institut Teknologi Sepuluh Nopember, 2025. Accessed: May 22, 2025. [Online]. Available: https://repository.its.ac.id/118144/?utm_source=chatgpt.com

C.-H. Lin and U. Nuha, “Sentiment analysis of Indonesian datasets based on a hybrid deep-learning strategy,” Journal of Big Data, vol. 10, no. 1, p. 88, May 2023, doi: 10.1186/s40537-023-00782-9.

J. Sutton-Parker, “Determining the impact of information technology greenhouse gas abatement at the Royal Borough of Kingston and Sutton Council,” Procedia Computer Science, vol. 203, pp. 300–309, Jan. 2022, doi: 10.1016/j.procs.2022.07.038.

A. Miftahusalam, A. F. Nuraini, A. A. Khoirunisa, and H. Pratiwi, “Perbandingan Algoritma Random Forest, Naïve Bayes, dan Support Vector Machine Pada Analisis Sentimen Twitter Mengenai Opini Masyarakat Terhadap Penghapusan Tenaga Honorer,” Seminar Nasional Official Statistics, vol. 2022, no. 1, Art. no. 1, Nov. 2022, doi: 10.34123/semnasoffstat.v2022i1.1410.

CHAN, Fajri Rinaldi; YANTI, Rahma; RAMADHANU, Agung. PENINGKATAN METODE MEDIAN FILTER UNTUK IDENTIFIKASI DAN AKURASI JENIS PISANG EMAS DAN PISANG KAPAS. JOISIE (Journal Of Information Systems And Informatics Engineering), [S.l.], v. 8, n. 2, p. 314-322, dec. 2024. ISSN 2527-3116. Available at: <https://ejournal.pelitaindonesia.ac.id/ojs32/index.php/JOISIE/article/view/4767>. Date accessed: 23 aug. 2025. doi: https://doi.org/10.35145/joisie.v8i2.4767.

Saputra, R., Dila, R., & Ramadhanu, A. (2024). Klasifikasi Timun Segar dan Busuk menggunakan K-Means Clustering. Journal of Education Research, 5(4), 4799–4806. https://doi.org/10.37985/jer.v5i4.1715

Chan, F. R., & Ramadhanu, A. (2025). IMPLEMENTASI HYBRID INTELLIGENCE SYSTEM UNTUK KLASIFIKASI BIJI-BIJIAN DENGAN ALGORITMA PCA DAN KNN. INTI Nusa Mandiri, 19(2), 240–250. https://doi.org/10.33480/inti.v19i2.6397

Downloads

Published

2025-07-03

How to Cite

Muharram, I. S., & Muhammad Faisal. (2025). Tweet Sentiment Classification Towards Mobile Services Using Naive Bayes and Support Vector Machine. Jurnal KomtekInfo, 12(2), 115–123. https://doi.org/10.35134/komtekinfo.v12i2.642

Issue

Section

Articles