Prediction of Extreme Poverty Levels Using the Performance of the Multiple Linear Regression Method

Authors

  • B Borianto Universitas Putra Indonesia YPTK
  • Y Yuhandri Universitas Putra Indonesia YPTK
  • Rini Sovia Universitas Putra Indonesia YPTK

DOI:

https://doi.org/10.35134/komtekinfo.v12i3.655

Keywords:

extreme poverty, prediction, MLR, socioeconomic policy, predictive model evaluation

Abstract

Extreme poverty is a type of poverty that is defined as a condition that cannot meet basic human needs. The Government of Indonesia through Presidential Instruction No. 4 of 2022 sets a target for the elimination of extreme poverty, but this effort requires an accurate and comprehensive data-driven approach. This study aims to build a model for predicting extreme poverty levels. The method used in this study is Multiple Linear Regression (MLR), which is able to measure the contribution of each predictor variable to the phenomenon of extreme poverty. The dataset processed in this study was sourced from the Dumai City Social and Community Empowerment Office. The dataset consisted of 2,007 extreme poverty data with predictor variables in the form of residence ownership (X1), employment (X2), income (X3), education (X4), and health insurance (X5). The results of this study show that the Multiple Linear Regression method is able to provide accurate predictions of the extreme poverty level in Dumai City with an accuracy rate of 87%. The model evaluation was carried out using three metrics based on the results of the test obtained R = 0.674 and R² = 0.454, which means that 45.4% of the variation in poverty status can be explained by the variables of home ownership, type of occupation, amount of income, education level, and health insurance. The ANOVA test showed a value of F = 332.777 with a significance of < 0.001, so the model was simultaneously significant. The regression coefficient showed that all variables had a negative and significant influence (p < 0.05) on poverty status, with the greatest influence coming from the type of job (β = -0.304) and amount of income (β = -0.291), followed by home ownership, health insurance, and education level. Thus, the Multiple Linear Regression method has proven to be effective in building an extreme poverty prediction system. This model can be a basic reference in supporting more targeted, measurable, and data-based socio-economic policy decision-making, especially in efforts to combat extreme poverty in a sustainable and systematic manner.

References

Fauzi, Mahmuddin, Juhari, S. Amirulkamar, dan U. Hidayati, “Extreme Poverty Alleviation Model in Alleviating Social Inequality (Sociological and Sharia Approaches in Poverty Alleviation Policy in Indonesia),” Al-Risalah Forum Kaji. Huk. dan Sos. Kemasyarakatan, vol. 23, no. 2, hal. 215–228, 2023, doi: 10.30631/alrisalah.v23i2.1474.

Nasokah dkk, “UPAYA PENCEGAHAN KEMISKINAN EKSTREM MELALUI PEMBERDAYAAN SINGKONG DI DESA DERONGISOR,” J. Pengabdi. Masy., hal. 202–208, 2022.

P. I. Lestari, B. Robiani, dan Sukanto, “Kemiskinan Ekstrem, Ketimpangan Dan Pertumbuhan Ekonomi Di Indonesia,” J. Ilm. Ekon. dan Bisnis, vol. 11, no. 2, hal. 1739-1752–1739 – 1752, 2023, [Daring]. Tersedia pada: https://jurnal.unived.ac.id/index.php/er/article/view/4789

TNP2K, “Penentuan Wilayah Prioritas Kemiskinan Ekstrem 2021-2024,” hal. 1–20, 2022.

Badan Amil Zakat Nasional, “Peta Kemiskinan Ekstrem Nasional,” hal. 1–33, 2024.

O. Kanat, Z. Yan, M. M. Asghar, S. A. H. Zaidi, dan A. Sami, “Gender Inequality and Poverty: The Role of Financial Development in Mitigating Poverty in Pakistan,” J. Knowl. Econ., hal. 11848–11876, 2023, doi: 10.1007/s13132-023-01527-y.

J. Tang, X. Zhao, F. Zhang, A. Qiu, dan K. Tao, “Poverty Estimation Using a ConvLSTM-Based Model With Multisource Remote Sensing Data: A Case Study in Nigeria,” IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens., vol. 17, hal. 3516–3529, 2024, doi: 10.1109/JSTARS.2024.3353754.

BPK, “Instruksi Presiden Republik Indonesia Nomor 4 Tahun 2022 Tentang Percepatan Penghapusan Kemiskinan Ekstrem,” Badan Pemeriksaan Keuang., no. 146187, hal. 1–15, 2022, [Daring]. Tersedia pada: https://peraturan.bpk.go.id/Details/211477/inpres-no-4-tahun-2022

Y. S. Pasaribu dan J. Ivanna, “Partisipasi Masyarakat Dalam Pengambilan Keputusan Untuk Penanggulangan Kemiskinan: Tinjauan Terhadap Peran Aktif Komunitas Lokal di Pulo Brayan Bengkel Baru, Kec. Medan Timur, Kota Medan,” IJEDR Indones. J. Educ. Dev. Res., vol. 2, no. 2, hal. 1095–1100, 2024, doi: 10.57235/ijedr.v2i2.2495.

E. Gravionika, A. D. Subarkah, dan ..., “Kecerdasan Buatan (Artificial Intelligence) Sebagai Katalisator Ekonomi Dalam Peluang Dan Tantangan Di Era Digital,” … Se Indones., no. 20, hal. 149–155, 2024, [Daring]. Tersedia pada: https://conference.untag-sby.ac.id/index.php/snkui/article/view/5335%0Ahttps://conference.untag-sby.ac.id/index.php/snkui/article/download/5335/3007

R. B. Sitepu dkk, “Peningkatan Kreativitas dan Kapasitas Produksi Kerajinan Tangan Berbasis AI menuju SDGs pada Handmade House di Kelurahan Kebraon Surabaya,” J. Leverage, Engag. Empower. Community, vol. 6, no. 2, 2024, doi: 10.37715/leecom.v6i2.5050.

M. U. Ramzan dkk, “Gated-Attention Feature-Fusion Based Framework for Poverty Prediction,” 2024, [Daring]. Tersedia pada: http://arxiv.org/abs/2411.19690

H. Sarmadi, T. Rognvaldsson, N. R. Carlsson, M. Ohlsson, I. Wahab, dan O. Hall, “Towards Explaining Satellite Based Poverty Predictions with Convolutional Neural Networks,” 2023 IEEE 10th Int. Conf. Data Sci. Adv. Anal. DSAA 2023 - Proc., 2023, doi: 10.1109/DSAA60987.2023.10302541.

H. Sarmadi, O. Hall, T. Rögnvaldsson, dan M. Ohlsson, “Leveraging ChatGPT’s Multimodal Vision Capabilities to Rank Satellite Images by Poverty Level: Advancing Tools for Social Science Research,” hal. 1–9, 2025, [Daring]. Tersedia pada: http://arxiv.org/abs/2501.14546

S. Murugaboopathy, C. T. Jerzak, dan A. Daoud, “Platonic Representations for Poverty Mapping: Unified Vision-Language Codes or Agent-Induced Novelty?,” 2025, [Daring]. Tersedia pada: http://arxiv.org/abs/2508.01109

A. Alamsyah, A. A. Hafidh, dan A. D. Mulya, “Innovative Credit Risk Assessment: Leveraging Social Media Data for Inclusive Credit Scoring in Indonesia’s Fintech Sector,” J. Risk Financ. Manag., vol. 18, no. 2, 2025, doi: 10.3390/jrfm18020074.

N. Laelatul Azizah, N. Suarna, dan W. Prihartono, “Prediksi Tingkat Kemiskinan Di Provinsi Jawa Barat Menggunakan Algoritma Regresi Linear,” JATI (Jurnal Mhs. Tek. Inform., vol. 7, no. 6, hal. 3377–3381, 2024, doi: 10.36040/jati.v7i6.8201.

L. M. Sinaga dan S. P. Sipayung, “Analisis dan Prediksi Persentase Angka Kemiskinan di Indonesia menggunakan Metode Regresi Linier Berganda,” vol. 06, no. 02, hal. 116–125, 2024.

J. Halif, D. Wahiddin, I. Sanjaya, dan S. Faisal, “Model Regresi Linear Berganda untuk Prediksi Tingkat Pengangguran di Provinsi Jawa Barat,” hal. 324–335, 2025, doi: 10.33364/algoritma/v.22-1.2312.

P. Y. Haliza, R. Rafiza, dan J. Simanullang, “Penerapan Regresi Linier Berganda Dalam Memprediksi IPM Berdasarkan Faktor Ekonomi Dan Sosial Di Sumatera Barat,” vol. 2, no. June, hal. 544–554, 2025.

A. Permana, B. Irawan, dan A. Bahtiar, “Prediksi jumlah pengangguran di jawa barat dengan menggunakan algoritma regresi liniear,” vol. 8, no. 5, hal. 10170–10176, 2024.

Downloads

Published

2025-09-30

How to Cite

Borianto, B., Yuhandri, Y., & Sovia, R. (2025). Prediction of Extreme Poverty Levels Using the Performance of the Multiple Linear Regression Method. Jurnal KomtekInfo, 12(3), 158–165. https://doi.org/10.35134/komtekinfo.v12i3.655

Issue

Section

Articles