Convolutional Neural Network Method in Detecting Digital Image Based Physical Violence

Authors

  • Elpina Sari Dewi Hasibuan Elpina Universitas Putra Indonesia YPTK Padang
  • Y Yuhandri Universitas Putra Indonesia YPTK
  • S Sumijan Universitas Putra Indonesia YPTK

DOI:

https://doi.org/10.35134/komtekinfo.v12i4.657

Keywords:

physical violence

Abstract

Physical violence in the educational environment has a serious impact on mental health, safety, and student achievement, in addition to causing physical injury, violence can cause psychological trauma that interferes with the learning process, due to the limited supervision system, lack of officers, and the absence of automatic detection technology. This research aims to design and develop an automatic detection system of physical violence using digital image processing technology. This study uses the Convolutional Neural Network (CNN) method with the stages of digital image collection and labeling, preprocessing, model training, and evaluation using accuracy, precision, recall, and F1-score metrics. The CNN architecture was chosen because it is efficient and accurate, and it supports data augmentation to improve generalization. The dataset was taken from kaggle and primary data at the al-falah huraba Islamic boarding school which consisted of 2000 images which included: 800 images of violence on CCTV of the dormitory room, 500 images of violence simulation of training videos and 500 non-violent images. The results showed that the developed CNN model was able to detect physical violence with an accuracy of above 88%, making it feasible to apply in surveillance camera-based school surveillance systems (CCTV). The system is able to classify images in real-time into two categories: safe and hard. This research contributes to the use of artificial intelligence to support efficient and affordable technology-based education security.

References

R. D. Natasya, “Implementasi Artificial Intelligence ( Ai ) Dalam Teknologi Modern,” J. Komput. dan Teknol. Sains, vol. 2, no. 1, pp. 22–24, 2023.

A. Supriyadi, “Penerapan Metode Joyful Learning dalam Pembelajaran,” J. Pendidik. , vol. 8, no. 2, pp. 123–135, 2020.

J. A. Figo, N. Yudistira, and A. W. Widodo, “Deteksi Covid-19 dari Citra X-ray menggunakan Vision Transformer,” J. Pengemb. Teknol. Inf. dan Ilmu Komput., vol. 7, no. 3, pp. 1116–1125, 2023, [Online]. Available: https://j-ptiik.ub.ac.id

I. S. D. A. N. U. Untuk, D. Dan, and P. Tingkat, “Implementasi ssd-mobilenet dan u-net untuk deteksi dan penilaian tingkat keparahan pada aplikasi pelaporan jalan berlubang,” vol. 12, no. 3, pp. 4334–4344, 2024.

S. A. Putri, A. Rifai, and I. Nawawi, “Physical Violence Detection System to Prevent Student Mental Health Disorders Based on Deep Learning,” J. Pilar Nusa Mandiri, vol. 19, no. 2, pp. 103–108, 2023, doi: 10.33480/pilar.v19i2.4600.

S. Nasional, T. Elektro, S. Informasi, and T. Informatika, “Sistem Deteksi Kekerasan,” pp. 198–204, 2024.

G. A. Sidik, “Deteksi Tindak Kekerasan dan Perundungan Pada Anaka Berbasis YOLOv8 (You Only Look Once),” vol. 3, no. 9, 2024.

A. D. Fikri, P. F. Utaminingrum, and E. G. Edhi, “Sistem Pendeteksi Kekerasan di Ruang Publik Menggunakan Metode 3D Convolutional Neural Network,” vol. 1, no. 1, pp. 1–6, 2023.

S. A. Putri et al., “PHYSICAL VIOLENCE DETECTION SYSTEM TO PREVENT STUDENT,” vol. 19, no. 2, 2023, doi: 10.33480/pilar.v19i2.4600.

A. Informatics, S. A. Putri, A. Rifai, I. Nawawi, and A. Info, “Aplikasi Cerdas Sistem Deteksi Tindak Kekerasan Fisik Untuk Pengawasan Perundungan Dengan Convolutional Neural Network,” vol. 7, no. 2, pp. 332–340, 2024.

K. Disease, “IMPLEMENTASI ALGORITMA CONVOLUTIONAL NEURAL NETWORK UNTUK MENDETEKSI PENYAKIT GINJAL IMPLEMENTATION OF CONVOLUTIONAL NEURAL NETWORK FOR DETECTING,” vol. 4, no. 2, pp. 212–219, 2022.

N. Dewi and F. Ismawan, “Implementasi Deep Learning Menggunakan Convolutional Neural Network untuk Sistem Pengenalan Wajah,” vol. 14, no. 1, pp. 34–43, 2021, doi: 10.30998/faktorexacta.v14i1.8989.

C. N. Network, “Convolutional Neural Network and LSTM for Seat Belt Detection in,” vol. 5, no. 158, pp. 4–6, 2024.

A. Peryanto et al., “Rancang Bangun Klasifikasi Citra Dengan Teknologi Deep Learning Berbasis Metode Convolutional Neural Network,” vol. 8, pp. 138–147, 2019.

R. A. Tilasefana and R. E. Putra, “Penerapan Metode Deep Learning Menggunakan Algoritma CNN Dengan Arsitektur VGG NET Untuk Pengenalan Cuaca,” J. Informatics Comput. Sci., vol. 05, no. 1, pp. 48–57, 2023.

S. Carita and R. B. Hadiprakoso, “Double Face Masks Detection Using Region-Based Convolutional Neural Network,” vol. 9, no. 4, pp. 904–911, 2023, doi: 10.26555/jiteki.v9i4.23902.

Y. Setiawan, N. U. Maulidevi, and K. Surendro, “DETEKSI CYBERBULLYING DENGAN MESIN PEMBELAJARAN KLASIFIKASI ( SUPERVISED LEARNING ) : PELUANG DAN TANTANGAN CYBERBULLYING DETECTION USING SUPERVISED LEARNING :,” vol. 9, no. 7, pp. 1577–1582, 2022, doi: 10.25126/jtiik.202296747.

F. Setiawan, A. Wahyudi, and N. A. Febriyanti, “Deteksi Tingkat Keparahan Ujaran Kebencian Menggunakan Bi-LSTM pada Teks Bahasa Indonesia,” vol. 12, pp. 21–28, 2024.

B. Neural and C. Neural, “Komparasi Metode Backpropagation Neural Network dan Convolutional Neural Network Pada Pengenalan Pola Tulisan Tangan,” vol. 6, no. 1, pp. 56–63, 2022.

K. Yolo, F. Firdausillah, E. D. Udayanti, E. Kartikadarma, I. Komputer, and U. Dian, “JURNAL RESTI,” no. 158, pp. 355–360, 2024.

Downloads

Published

2025-12-30

How to Cite

Elpina, E. S. D. H., Yuhandri, Y., & Sumijan, S. (2025). Convolutional Neural Network Method in Detecting Digital Image Based Physical Violence. Jurnal KomtekInfo, 12(4), 220–225. https://doi.org/10.35134/komtekinfo.v12i4.657

Issue

Section

Articles