Utilization of Convolutional Neural Network Method in Customer Identification Based on Facial Images

Authors

  • Ade Puspita Sari Ade Universitas Putra Indonesia YPTK Padang
  • Sarjon Defit Universitas Putra Indonesia YPTK
  • Sumijan

DOI:

https://doi.org/10.35134/komtekinfo.v12i3.664

Keywords:

CNN, facial recognition, customer identification, computer vision, ResNet-50

Abstract

Artificial intelligence-based facial recognition technology, especially using the Convolutional Neural Network (CNN) method, is increasingly widespread in various business applications, such as customer data management. This technology allows the system to recognize and identify individuals automatically through facial images, so it is very potential to be applied in customer management. This study aims to implement CNN technology in automatically identifying old customers in a case study in JAVApace Studio. CNN method for facial recognition, optimizing the accuracy of old customer identification, designing CNN system integration in computer vision-based applications, and measuring CNN performance in real-time facial identification.

The research method was carried out using a quantitative approach through data collection stages in the form of 875 customer facial images taken in JAVapace Studio, data preprocessing (cropping, resizing, and data augmentation), dataset division for training, validation, and testing. The CNN model used is the ResNet-50 architecture with fine-tuning techniques and freezing layers to improve training efficiency. Model performance evaluation uses a confusion matrix with accuracy, recall, and precision metrics. The results show that the CNN-based facial recognition system achieved 95.7% accuracy in distinguishing existing customers from the test data used. The recall rate was 94.5%, while the precision rate reached 96.2%. The discussion of the results also indicates that the fine-tuning approach is effective in optimizing model performance with an inference time suitable for real-time implementation needs. This study confirms that the implementation of CNN with ResNet-50 architecture is effectively able to recognize the faces of old customers with high levels of accuracy, recall, and precision, making it the right solution in managing customer data automatically and efficiently.

References

Nalibratawati, R., Putri, K. P., & Hamidah, F. N. Analisis Masalah Dan Tantangan Dalam Mengelola Hubungan Dengan Pelanggan Di Pt. Agung Solusi Trans: Strategi Komunikasi Untuk Meningkatkan Loyalitas Pelanggan.

Yusuf, H., Ilyas, M., Erwin, E., Imam, M. A., Almahdy, A. M., Maharani, I., ... & Rostiani, W. (2025). Industri Fashion: Model Pembentukan Loyalitas Konsumen Melalui Bisnis Digital Dengan Inovasi. Modus, 37(1), 67-80.

Wijaya, H. D. (2023). Strategi Customer-Centric Dalam Marketing: Dampaknya Pada Loyalitas Dan Retensi Pelanggan. Jurnal Manajemen Dan Bisnis Ekonomi, 1(1), 267-279.

Etuk, A., Anyadighibe, J. A., Amadi, C., & James, E. E. (2022). Service quality delivery and consumers’ choice of fast-food outlets. International Research Journal of Management, IT and Social Sciences, 9(2), 264-273.

Ariska, A. M., Irawati, N., & Muhazir, A. (2022). Penerapan Elektronik Customer Relationship Management (E-CRM) Dalam Penjualan Roti Berbasis Web. Jurnal Media Informatika Budidarma, 6(2), 1090.

Mufatikhaturrohmah, S. (2025). Pengaruh Teknologi Biometrik dan Jaminan Keamanan Cyber Terhadap Minat Transaksi Perbankan Online di Provinsi Lampung dalam Perspektif Islam. Jurnal Informatika Ekonomi Bisnis, 355-363.

Sulartopo, S., Kholifah, S., Danang, D., & Santoso, J. T. (2023). Transformasi proyek melalui keajaiban kecerdasan buatan: mengeksplorasi potensi ai dalam project management. Jurnal Publikasi Ilmu Manajemen, 2(2), 363-392.

Listy, V., & Ilham, I. (2025). Revolusi Sistem Informasi Manajemen di Era AI dan Big Data Mengubah Cara Bisnis Bekerja. Simpatik: Jurnal Sistem Informasi dan Informatika, 5(1), 27-36.

Dompeipen, T. A., Sompie, S. R., & Najoan, M. E. (2021). Computer vision implementation for detection and counting the number of humans. Jurnal Teknik Informatika, 16(1), 65-76.

Widalala, R. R., Khairunissa, A. N., Dika, J. A., & Wijanarko, A. A. Z. (2024). Dampak Penggunaan Artificial Intelligence pada Keamanan Siber: Sebuah Kajian Terhadap Potensi Keuntungan dan Ancaman. Berajah Journal, 4(8), 1541-1552.

Dani, A. R., & Handayani, I. (2024). Klasifikasi Motif Batik Yogyakarta Menggunakan Metode Glcm Dan Cnn. Jurnal Teknologi Terpadu, 10(2), 142-156.

Abdiansah, L., Sumarno, S., Eviyanti, A., & Azizah, N. L. (2025). Penerapan Algoritma Convolutional Neural Networks untuk Pengenalan Tulisan Tangan Aksara Jawa: Implementation of Convolutional Neural Networks Algorithm for Javanese Handwriting Recognition. MALCOM: Indonesian Journal of Machine Learning and Computer Science, 5(2), 496-504.

SETIAWAN, F., Helilintar, R., & Farida, I. N. (2025, July). Pemanfaatan Pustaka InsightFace Dalam Sistem Presensi Berbasis Pengenalan Wajah. In Prosiding SEMNAS INOTEK (Seminar Nasional Inovasi Teknologi) (Vol. 9, No. 3, pp. 1878-1885).

Sasongko, T. B., Haryoko, H., & Amrullah, A. (2024). Analisis Efek Augmentasi Dataset dan Fine Tune pada Algoritma Pre-Trained Convolutional Neural Network (CNN). Jurnal Teknologi Informasi dan Ilmu Komputer, 10(4), 763-768.

Schroff, F., Kalenichenko, D., & Philbin, J. (2015). Facenet: A unified embedding for face recognition and clustering. In Proceedings of the IEEE conference on computer vision and pattern recognition (pp. 815-823).

Chihaoui, M., Elkefi, A., Bellil, W., & Ben Amar, C. (2016). A survey of 2D face recognition techniques. Computers, 5(4), 21.

Trigueros, D. S., Meng, L., & Hartnett, M. (2018). Face recognition: From traditional to deep learning methods. arXiv preprint arXiv:1811.00116.

Naseem, S., Javed, K., Khan, M. J., Rubab, S., Khan, M. A., & Nam, Y. (2021). Integrated CWT-CNN for epilepsy detection using multiclass EEG dataset. Computers, Materials & Continua, 69(1), 471-486.

Liew, S. S., Hani, M. K., Radzi, S. A., & Bakhteri, R. (2016). Gender classification: a convolutional neural network approach. Turkish Journal of Electrical Engineering and Computer Sciences, 24(3), 1248-1264.

Baareh, A. K. M. (2024). Facial recognition and discovery using convolution deep learning neural network. Journal of Computer Science, 20(11), 1559–1568. https://doi.org/10.3844/jcssp.2024.1559.1568

Rochmanullah, M. A., Vendyansyah, N., & Wahyuni, F. S. (2025). Implementasi Convolutional Neural Network (CNN) untuk Face Recognition pada Sistem Presensi Kehadiran. Indonesian Journal of Applied Informatics (IJAI), 9(2)

Dony, & Lubis, M. A. (2025). Deteksi YOLOv8 dan pengenalan wajah menggunakan RESNET50 pada gereja. Indonesian Journal of Computer Science, 14(1), 52–60

Downloads

Published

2025-09-30

How to Cite

Ade, A. P. S., Sarjon Defit, & Sumijan. (2025). Utilization of Convolutional Neural Network Method in Customer Identification Based on Facial Images . Jurnal KomtekInfo, 12(3), 176–182. https://doi.org/10.35134/komtekinfo.v12i3.664

Issue

Section

Articles