Combination of Active Contour and CNN-based Segmentation Methods to Improve Accuracy in Detecting Rice Diseases

Authors

  • Wahyu Saptha Negoro Universitas Potensi Utama
  • Ratih Adinda Destari Universitas Potensi Utama
  • Asbon Hendra Azhar Universitas Potensi Utama
  • Achmad Syahrian Universitas Potensi Utama

DOI:

https://doi.org/10.35134/komtekinfo.v12i4.671

Keywords:

Segmentation, Active Contour, CNN, Detection, Rice Disease

Abstract

Rice diseases are one of the main factors causing decreased productivity and threatening national food security. The main problem in controlling rice diseases is the delay and inaccuracy of symptom identification in the field. This study aims to develop an artificial intelligence-based rice disease detection system through a combination of Active Contour and Convolutional Neural Network (CNN) methods. The research object is rice leaf images taken from rice fields in Pulau Sejuk Village, Batubara Medan, with a dataset of 600 images consisting of healthy leaves and 3 types of rice diseases. The Active Contour method is used in the segmentation stage to extract leaf areas precisely, while CNN is applied for the disease classification process. The results show that this combination of methods can significantly improve the accuracy of rice disease detection. The developed system is expected to assist farmers and stakeholders in the early detection of rice diseases, thereby supporting food innovation and increasing sustainable agricultural productivity.

References

S. S. Harakannanavar, J. M. Rudagi, V. I. Puranikmath, A. Siddiqua, and R. Pramodhini, “Plant leaf disease detection using computer vision and machine learning algorithms,” Global Transitions Proceedings, vol. 3, no. 1, pp. 305–310, 2022, doi: 10.1016/j.gltp.2022.03.016.

A. Bhatia, A. Chug, and A. P. Singh, “Application of extreme learning machine in plant disease prediction for highly imbalanced dataset,” Journal of Statistics and Management Systems, vol. 23, no. 6, pp. 1059–1068, 2020, doi: 10.1080/09720510.2020.1799504.

H. N. Ngugi, A. E. Ezugwu, A. A. Akinyelu, and L. Abualigah, “Revolutionizing crop disease detection with computational deep learning: A comprehensive review,” Environmental Monitoring and Assessment, vol. 196, p. 302, 2024, doi: 10.1007/s10661-024-12454-z.

W. Ding, M. Abdel-Basset, I. Alrashdi, and H. Hawash, “Next generation of computer vision for plant disease monitoring in precision agriculture,” Information Sciences, vol. 665, p. 120338, 2024, doi: 10.1016/j.ins.2024.120338.

S. Ali, M. Hassan, J. Y. Kim, M. I. Farid, M. Sanaullah, and H. Mufti, “FF-PCA-LDA: Intelligent feature fusion based PCA-LDA classification system for plant leaf diseases,” Applied Sciences, vol. 12, no. 7, p. 3514, 2022, doi: 10.3390/app12073514.

M. Tamoor and Y. Irfan, “Automatic segmentation of medical images using a novel Harris Hawk optimization method and an active contour model,” Journal of X-Ray Science and Technology, vol. 29, pp. 721–739, 2021, doi: 10.3233/XST-210879.

R. Ajitha and N. Punitha, “Active contour-based segmentation of normal and fetal spina bifida ultrasound images,” Journal of Physics: Conference Series, vol. 2318, no. 1, Art. no. 012045, 2022, doi: 10.1088/1742-6596/2318/1/012045.

A. Joshi, . S. Khan, A. Niaz, F. Akram, H. C. Song, and K. N. Choi, “Active contour model with adaptive weighted function for robust image segmentation under biased conditions,” Expert Systems with Applications, vol. 175, Art. no. 114811, 2021, doi: 10.1016/j.eswa.2021.114811.

A. M. Moubark, Z. Alomari, M. H. M. Zaman, M. A. Zulkifley, S. H. M. Ali, L. Nie, and S. Freear, “Optimizing the lateral beamforming step for filtered-delay multiply and sum beamforming to improve active contour segmentation using ultrafast ultrasound imaging,” Biomedical Signal Processing and Control, vol. 74, Art. no. 103267, 2022, doi: 10.1016/j.bspc.2021.103267.

A. S. B. Azam, A. K. Jumaat, M. Azdi, M. F. Normahirah, and N. A. Rahman, “Local image fitting-based active contour for vector-valued images,” Indonesian Journal of Electrical Engineering and Computer Science, vol. 32, no. 1, pp. 227–235, Oct. 2023, doi: 10.11591/ijeecs.v32.i1.pp227-235.

M. Essalat, M. Abolhosseini, T. H. Le, S. M. Moshtaghion, and M. R. Kanavi, “An interpretable deep learning approach for automatic diagnosis of fungal keratitis and acanthamoeba keratitis based on an introduced database of in vivo confocal microscopic images,” in Proc. ACM Int. Conf., 2022, doi: 10.1145/3394171.3413557.

H. Ghazouani, W. Barhoumi, E. Chakroun, and A. Chehri, “Dealing with unbalanced data in leaf disease detection: A comparative study of hierarchical classification, clustering-based undersampling and reweighting-based approaches,” Procedia Computer Science, vol. 225, pp. 4891–4900, 2023, doi: 10.1016/j.procs.2023.10.489.

W. S. Negoro, Sumijan and S. Bukhori, "Development of an Active Contour Method Based on Contrast Features to Detect Keratitis in the Cornea," 2024 Ninth International Conference on Informatics and Computing (ICIC), Medan, Indonesia, 2024, pp. 1-6, doi: 10.1109/ICIC64337.2024.10957258.

A. Nugroho, M. A. Soeleman, R. A. Pramunendar, Affandy, dan A. Nurhindarto, “Peningkatan performa ensemble learning pada segmentasi semantik gambar dengan teknik oversampling untuk class imbalance,” Jurnal Teknologi Informasi dan Ilmu Komputer (JTIIK), vol. 10, no. 4, pp. 899–908, Aug. 2023, doi: 10.25126/jtiik.2023106831.

M. Antonelli, A. Reinke, S. Bakas, K. Farahani, A. Kopp-Schneider, B. A. Landman, dan G. Litjens, “The Medical Segmentation Decathlon,” Nature Communications, vol. 13, no. 1, Art. no. 4128, 2022, doi: 10.1038/s41467-022-30695-9.

W. S. Negoro, A. H. Azhar, dan R. A. Destari, “Deteksi citra CT scan paru-paru untuk penentuan luas dan keliling dengan metode active contour,” Kesatria: Jurnal Penerapan Sistem Informasi (Komputer dan Manajemen), vol. 6, no. 1, pp. 252–261, 2025.

K. M. Rahouma, S. M. Mabrouk, dan M. Aouf, “Lung cancer diagnosis based on Chan–Vese active contour and polynomial neural network,” Procedia Computer Science, vol. 194, pp. 22–31, 2021, doi: 10.1016/j.procs.2021.10.056.

V. Yevsieiev, S. Maksymova, N. Starodubtsev, dan A. Abu-Jassar, “Active contours method implementation for objects selection in the mobile robot’s workspace,” Journal of Universal Science Research, vol. 2, no. 2, pp. 135–145, 2024.

W. S. Negoro, Sumijan, dan S. Bukhori, “Detection of keratitis in the cornea by developing an active contour method based on contrast features,” International Journal on Informatics Visualization (JOIV), vol. 9, no. 2, pp. 1–6, Mar. 2025, doi: 10.62527/joiv.9.2.3356.

L. F. Olivia, Y. Yuhandri, dan S. Arlis, “Penerapan deep learning menggunakan metode convolutional neural network dan K-means dalam klasterisasi citra butiran pasir,” Jurnal KomtekInfo, vol. 12, no. 1, pp. 54–62, 2025, doi: 10.

Downloads

Published

2025-12-30

How to Cite

Saptha Negoro, W., Adinda Destari, R. ., Hendra Azhar, A. ., & Syahrian, A. . (2025). Combination of Active Contour and CNN-based Segmentation Methods to Improve Accuracy in Detecting Rice Diseases. Jurnal KomtekInfo, 12(4), 246–251. https://doi.org/10.35134/komtekinfo.v12i4.671

Issue

Section

Articles